OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
Index entries for linear recurrences with constant coefficients, signature (6,-7,-8,5,2,-1).
FORMULA
a(n) = Sum_{k=0..n} k*A046741(n,k).
G.f.: x*(1 + 2*x - 3*x^2 + 2*x^3)/(1 - 3*x - x^2 + x^3)^2.
EXAMPLE
a(2)=8 because in a 2 X 2 array of compartments, numbered clockwise starting from the NW one, we have 7 (=A030186(2)) possible arrangements of dumbbells: [ ], [14], [23], [12], [34], [14,23] and [12,34] (ij indicates a dumbbell placed in the compartments i and j); these contain altogether 8 dumbbells.
MAPLE
G:=z*(1+2*z-3*z^2+2*z^3)/(1-3*z-z^2+z^3)^2: Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=1..27);
MATHEMATICA
LinearRecurrence[{6, -7, -8, 5, 2, -1}, {1, 8, 38, 166, 671, 2602}, 30] (* G. C. Greubel, Oct 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2) \\ G. C. Greubel, Oct 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 )); // G. C. Greubel, Oct 28 2019
(Sage)
def A123518_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 ).list()
a=A123518_list(30); a[1:] # G. C. Greubel, Oct 28 2019
(GAP) a:=[1, 8, 38, 166, 671, 2602];; for n in [7..30] do a[n]:=6*a[n-1] -7*a[n-2]-8*a[n-3]+5*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 16 2006
STATUS
approved