login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123518
Number of dumbbells in all possible arrangements of dumbbells on a 2 X n rectangular array of compartments.
1
1, 8, 38, 166, 671, 2602, 9792, 36068, 130697, 467556, 1655406, 5811290, 20255279, 70172502, 241839184, 829685064, 2835099649, 9653650752, 32768012102, 110913651342, 374469646511, 1261386990850, 4240037471152, 14225209349036
OFFSET
1,2
LINKS
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
FORMULA
a(n) = Sum_{k=0..n} k*A046741(n,k).
G.f.: x*(1 + 2*x - 3*x^2 + 2*x^3)/(1 - 3*x - x^2 + x^3)^2.
EXAMPLE
a(2)=8 because in a 2 X 2 array of compartments, numbered clockwise starting from the NW one, we have 7 (=A030186(2)) possible arrangements of dumbbells: [ ], [14], [23], [12], [34], [14,23] and [12,34] (ij indicates a dumbbell placed in the compartments i and j); these contain altogether 8 dumbbells.
MAPLE
G:=z*(1+2*z-3*z^2+2*z^3)/(1-3*z-z^2+z^3)^2: Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=1..27);
MATHEMATICA
LinearRecurrence[{6, -7, -8, 5, 2, -1}, {1, 8, 38, 166, 671, 2602}, 30] (* G. C. Greubel, Oct 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2) \\ G. C. Greubel, Oct 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 )); // G. C. Greubel, Oct 28 2019
(Sage)
def A123518_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 ).list()
a=A123518_list(30); a[1:] # G. C. Greubel, Oct 28 2019
(GAP) a:=[1, 8, 38, 166, 671, 2602];; for n in [7..30] do a[n]:=6*a[n-1] -7*a[n-2]-8*a[n-3]+5*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
CROSSREFS
Sequence in context: A026640 A122682 A225429 * A197338 A214931 A229366
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 16 2006
STATUS
approved