The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123517 Triangle read by rows: T(n,k) = floor(n/k + 1/2) - floor(n/(k + 1/2)) (1<=k<=n). 1
 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 0, 1, 0, 0, 1, 3, 1, 1, 1, 1, 0, 0, 1, 3, 2, 1, 0, 1, 1, 0, 0, 1, 4, 1, 1, 1, 1, 1, 0, 0, 0, 1, 4, 2, 1, 1, 0, 1, 1, 0, 0, 0, 1, 4, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 5, 2, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 5, 2, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS Row n has sum n. REFERENCES B. Chen, C. Kimberling and P. R. Pudaite, Math. Magazine, 77, No. 1, 2004, pp. 70 (Q937), 75 (A937). LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened MAPLE T:=proc(n, k) if k<=n then floor(n/k+1/2)-floor(n/(k+1/2)) else 0 fi end: for n from 1 to 16 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form MATHEMATICA Table[Floor[n/k + 1/2] - Floor[n/(k + 1/2)], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Oct 14 2017 *) PROG (PARI) for(n=1, 10, for(k=1, n, print1(floor(n/k + 1/2) - floor(n/(k + 1/2)), ", "))) \\ G. C. Greubel, Oct 14 2017 CROSSREFS Sequence in context: A324667 A258260 A094713 * A178948 A203827 A194289 Adjacent sequences:  A123514 A123515 A123516 * A123518 A123519 A123520 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Oct 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 23:16 EDT 2021. Contains 347548 sequences. (Running on oeis4.)