login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258260 Expansion of f(x) + 2*f(x^2) + 3*f(x^9) + 6*f(x^18) in powers of x where f(x) := x / (1 + x^2). 1
0, 1, 2, -1, 0, 1, -2, -1, 0, 4, 2, -1, 0, 1, -2, -1, 0, 1, 8, -1, 0, 1, -2, -1, 0, 1, 2, -4, 0, 1, -2, -1, 0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, -1, 0, 4, -2, -1, 0, 1, 2, -1, 0, 1, -8, -1, 0, 1, 2, -1, 0, 1, -2, -4, 0, 1, 2, -1, 0, 1, -2, -1, 0, 1, 2, -1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..76.

FORMULA

a(n) is multiplicative with a(2) = 1, a(2^e) = 0 if e>1, a(3) = -1, a(3^e) = 4 * (-1)^e if e>1, a(p^e) = 1 if p == 1 (mod 4), a(p^e) = (-1)^e if p == 3 (mod 4).

a(n) = -a(-n) = a(n+72) = a(n+36)*(-1)^(mod(n,4)=2) for all n in Z.

0 = a(n) + a(n+18) + a(n+36) + a(n+54) for all n in Z.

Sum_{d|n} a(d) * (-1)^(n+d) = A258256(n) if n>0.

EXAMPLE

G.f. = x + 2*x^2 - x^3 + x^5 - 2*x^6 - x^7 + 4*x^9 + 2*x^10 - x^11 + ...

MATHEMATICA

a[ n_] := {1, 2, -1, 0}[[Mod[n, 4, 1]]] If[ Divisible[ n, 9], 4, 1] (-1)^Boole[Mod[n, 8] == 6];

a[ n_] := With[ {m = Mod[n, 72], f = #/(1 + #^2) &}, SeriesCoefficient[ f[x] + 2 f[x^2] + 3 f[x^9] + 6 f[x^18], {x, 0, m}]];

PROG

(PARI) {a(n) = [0, 1, 2, -1][n%4 + 1] * if(n%9, 1, 4) * (-1)^(n%8==6)};

CROSSREFS

Cf. A258256.

Sequence in context: A096875 A194514 A324667 * A094713 A123517 A178948

Adjacent sequences:  A258257 A258258 A258259 * A258261 A258262 A258263

KEYWORD

sign,easy,mult

AUTHOR

Michael Somos, May 24 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 10:28 EDT 2021. Contains 347689 sequences. (Running on oeis4.)