login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123519
Triangle read by rows: T(n,k) number of tilings of a 2n X 3 grid by dominoes, 2k of which are in a vertical position (0<=k<=n).
4
1, 1, 2, 1, 6, 4, 1, 12, 20, 8, 1, 20, 60, 56, 16, 1, 30, 140, 224, 144, 32, 1, 42, 280, 672, 720, 352, 64, 1, 56, 504, 1680, 2640, 2112, 832, 128, 1, 72, 840, 3696, 7920, 9152, 5824, 1920, 256, 1, 90, 1320, 7392, 20592, 32032, 29120, 15360, 4352, 512, 1, 110, 1980, 13728, 48048, 96096, 116480, 87040, 39168, 9728, 1024
OFFSET
0,3
COMMENTS
Sum of terms in row n = A001835(n+1). Sum(k*T(n,k), k=0..n)=A123520(n) (n>=1).
LINKS
Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials
FORMULA
T(n,k) = 2^k * binomial(n+k,2*k).
G.f.: (1-z)/(1 - 2*z + z^2 - 2*t*z).
Sum_{k=0..n} k*T(n,k) = A123520(n) (n>=1).
Row polynomials are b(n,2*x), where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k) * x^k are the Morgan-Voyce polynomials of A085478. The triangle is made up of the odd-indexed rows of A211956. - Peter Bala, May 01 2012
EXAMPLE
T(1,1)=2 because a 2 X 3 grid can be tiled in 2 ways with dominoes so that exactly 2 dominoes are in vertical position: place a horizontal domino above or below two adjacent vertical dominoes.
MAPLE
T:=(n, k)->2^k*binomial(n+k, 2*k): for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
Table[2^k*Binomial[n + k, 2*k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 14 2017 *)
CoefficientList[Table[Sqrt[2] Cosh[(2 n + 1) ArcSinh[Sqrt[x/2]]]/Sqrt[2 + x], {n, 0, 10}] // FunctionExpand // Simplify, x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
CoefficientList[Table[ChebyshevT[2 n - 1, Sqrt[1 + x/2]]/Sqrt[1 + x/2], {n, 10}], x] (* Eric W. Weisstein, Apr 04 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(2^k*binomial(n+k, 2*k), ", "))) \\ G. C. Greubel, Oct 14 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 16 2006
EXTENSIONS
Terms a(57) onward added by G. C. Greubel, Oct 14 2017
STATUS
approved