OFFSET
0,2
COMMENTS
Smallest number such that (sum of digits) mod (number of digits) = n in decimal representation. - Reinhard Zumkeller, Aug 15 2010
Consider a word on the alphabet {0,1,2,...,9} that has length of 10^a(n). The expected number of occurrences of a pattern (contiguous subsequence) p_1,p_2,...p_n for all such words is 1. - Geoffrey Critzer, Feb 03 2012
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..995
Index entries for linear recurrences with constant coefficients, signature (12, -21, 10).
FORMULA
a(n) = 10^n + n - 1.
From Reinhard Zumkeller, Aug 15 2010: (Start)
From R. J. Mathar, Aug 15 2010: (Start)
G.f.: x*(-10+19*x) / ( (10*x-1)*(x-1)^2 ).
a(n) = 12*a(n-1) -21*a(n-2) +10*a(n-3). (End)
MATHEMATICA
Table[10^n + n - 1, {n, 0, 20}] (* Geoffrey Critzer, Feb 03 2012 *)
LinearRecurrence[{12, -21, 10}, {0, 10, 101}, 20] (* Harvey P. Dale, Jul 20 2021 *)
PROG
(PARI) for(n=0, 30, print1(10^n + n -1, ", ")) \\ G. C. Greubel, Nov 30 2017
(Magma) [10^n + n -1: n in [0..30]]; // G. C. Greubel, Nov 30 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ron R. King, Nov 10 2006
EXTENSIONS
a(0) and terms beyond a(9) from Reinhard Zumkeller, Aug 15 2010
STATUS
approved