OFFSET
1,2
COMMENTS
Note that sigma(x) is odd iff x is in A028982 (numbers of the form m^2 or 2m^2 for m > 0).
a(14) > 10^18. a(15) = 175792216832685999. a(16) > 10^18. - Donovan Johnson, Jun 09 2011
From David A. Corneth, Apr 27 2019: (Start)
The least common divisor of the first 13 terms is k = 63540409508528099686942221. Checking the divisors of k to see if they give an upper bound for some a(n) gives these upper bounds:
a(14) <= 2489145199534927711323, for n = 16..27, a(n) <= 30520233337797869211, 1292387730916522149, 3939513268555279291149, 1066776514086397590567, 7538497634436073695117, 1629700928685734429889, 7217246969893966760937, 136456488459785229549035859, 396763033391372299743, 2215694819757447795607659, 500318185106520469975923, 5916133590898752361467873 respectively.
All these listed upper bounds are divisors of 12302819034343122006137404371659222028537. No more divisors of this number are an upper bound for any n.
This method doesn't give a stronger lower bound except that it tells us that a new upper bound for some term is no divisor of k. (End)
LINKS
Max Alekseyev, Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions, Journal of Integer Sequences 19 (2016), Article 16.5.2
David A. Corneth, PARI program, partially written by Max Alekseyev
EXAMPLE
For n = 3, sigma(x) = 347529 has exactly three solutions x = 164836, 203522, 239121.
MATHEMATICA
Needs["Statistics`DataManipulation`"]; nn=10^6; t1=DivisorSigma[1, Range[nn]^2]; t2=DivisorSigma[1, 2*Range[nn/Sqrt[2]]^2]; t=Join[t1, t2]; {u, v}=Transpose[Sort[Frequencies[t]]]; Table[p=Position[u, i, 1, 1][[1, 1]]; v[[p]], {i, Length[Union[u]]}]
CROSSREFS
KEYWORD
more,nonn
AUTHOR
T. D. Noe, Oct 02 2006
EXTENSIONS
a(8) from Martin Fuller, Oct 07 2006
a(9)-a(10) from Donovan Johnson, Dec 09 2008
a(11)-a(13) from Donovan Johnson, Jun 09 2011
STATUS
approved