login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128721
Number of UUU's in all skew Dyck paths of semilength n.
2
0, 0, 0, 4, 28, 157, 820, 4155, 20742, 102725, 506504, 2491230, 12236520, 60063399, 294748884, 1446436680, 7099442700, 34855583275, 171187439920, 841084246980, 4134129246180, 20328683526575, 100003531112300, 492153054177155
OFFSET
0,4
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps.
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
FORMULA
a(n) = Sum_{k=0..n-2} k*A128719(n,k) (n >= 2).
G.f.: (2zg - g + 1 - z + z^2)/(2zg + z - 1), where g = 1 + zg^2 + z(g-1) = (1 - z - sqrt(1 - 6z + 5z^2))/(2z).
Recurrence: 2*(n+1)*(121*n-348)*a(n) = (1663*n^2 - 4620*n + 1392)*a(n-1) - (2476*n^2 - 11133*n + 11787)*a(n-2) + 5*(n-4)*(211*n-537)*a(n-3). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 9*5^(n-3/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 19 2012
EXAMPLE
a(3)=4 because each of the paths UUUDDD, UUUDLD, UUUDDL and UUUDLL contains one UUU, while the other six paths of semilength 3 contain no UUU's.
MAPLE
G:=(1-5*z+4*z^2-2*z^3-(1-2*z)*sqrt(1-6*z+5*z^2))/2/z/sqrt(1-6*z+5*z^2): Gser:=series(G, z=0, 28): seq(coeff(Gser, z, n), n=0..25);
MATHEMATICA
CoefficientList[Series[(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)-(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+1-x+x^2)/(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 19 2012 *)
CROSSREFS
Cf. A128719.
Sequence in context: A123520 A012847 A273431 * A273647 A272936 A053524
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 30 2007
STATUS
approved