login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of vertical dominoes in all possible tilings of a 2n X 3 grid by dominoes.
2

%I #19 Oct 15 2017 01:00:01

%S 4,28,152,744,3436,15284,66224,281424,1178196,4874444,19973192,

%T 81189688,327817404,1316035940,5257118560,20909651104,82849544868,

%U 327163551612,1288036695544,5057236343176,19807689093644,77408388584724

%N Number of vertical dominoes in all possible tilings of a 2n X 3 grid by dominoes.

%H G. C. Greubel, <a href="/A123520/b123520.txt">Table of n, a(n) for n = 1..1000</a> (terms 0..100 from Vincenzo Librandi)

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-18,8,-1).

%F a(n) = Sum_{k=0..n} 2^(k+1) * k * C(n+k,2*k).

%F a(n) = Sum_{k=0..n} k * A123519(n,k).

%F G.f.: 4*z*(1-z)/(1-4*z+z^2)^2.

%F a(n) = (2+sqrt(3))^n*((1+sqrt(3))*n+1/sqrt(3))/3 + (2-sqrt(3))^n*((1-sqrt(3))*n-1/sqrt(3))/3. - _Vaclav Kotesovec_, Nov 29 2012

%e a(1) = 4 because a 2 X 3 grid can be tiled in 3 ways with dominoes: 3 horizontal dominoes, 1 horizontal domino above two adjacent vertical dominoes and 1 horizontal domino below two adjacent vertical dominoes; these have altogether 4 vertical dominoes.

%p a:=n->sum(k*2^(k+1)*binomial(n+k,2*k),k=0..n): seq(a(n),n=1..24);

%t FullSimplify[Table[(2+Sqrt[3])^n*((1+Sqrt[3])*n+1/Sqrt[3])/3 + (2-Sqrt[3])^n*((1-Sqrt[3])*n-1/Sqrt[3])/3,{n,1,20}]] (* _Vaclav Kotesovec_, Nov 29 2012 *)

%t Table[Sum[2^(k + 1)*k*Binomial[n + k, 2 k], {k, 0, n}], {n, 0, 50}] (* _G. C. Greubel_, Oct 14 2017 *)

%o (PARI) z='z+O('z^50); Vec(4*z*(1-z)/(1-4*z+z^2)^2) \\ _G. C. Greubel_, Oct 14 2017

%Y Cf. A001835, A123519.

%K nonn,easy

%O 1,1

%A _Emeric Deutsch_, Oct 16 2006