login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349957
Number of ways to write n as x^4 + y^2 + (z^2 + 11*16^w)/60, where x,y,z are nonnegative integers, and w is 0 or 1.
5
1, 2, 3, 5, 6, 4, 3, 3, 3, 4, 3, 4, 5, 3, 2, 2, 4, 4, 5, 9, 9, 3, 3, 4, 6, 5, 5, 9, 7, 4, 4, 6, 5, 2, 4, 8, 7, 3, 5, 7, 7, 4, 4, 4, 4, 4, 6, 9, 4, 3, 3, 9, 9, 4, 4, 5, 7, 2, 4, 4, 4, 2, 7, 7, 4, 3, 5, 12, 7, 3, 1, 6, 6, 4, 5, 8, 3, 1, 4, 5, 6, 3, 8, 14, 13, 6, 5, 5, 6, 6, 9, 8, 6, 3, 4, 8, 6, 6, 5, 12
OFFSET
1,2
COMMENTS
Conjecture 1: a(n) > 0 for all n > 0.
This has been verified for n <= 10^6. It seems that a(n) = 1 only for n = 1, 71, 78, 247, 542, 1258, 1907, 5225, 19798.
Conjecture 2: (i) If a is 1 or 3, then each n = 0,1,2,... can be written as a*x^8 + y^2 + (7*z^4 + w^2)/64 with x,y,z,w nonnegative integers.
(ii) If a is among 1,2,5, then each n = 0,1,2,... can be written as a*x^8 + y^2 + (11*z^4 + w^2)/60 with x,y,z,w nonnegative integers.
Conjecture 3: If (a,b, m) is among the triples (1,7,8), (1,11,12), (2,7,8), (3,11,12), (5,7,8), then each n = 0,1,2,... can be written as a*x^4 + y^2 + (b*z^6 + w^2)/m with x,y,z,w nonnegative integers.
Conjecture 4: (i) If F(x,y,z,w) is x^6 + y^2 + (5*z^4 + 3*w^2)/16 or 3x^6 + 2*y^2 + (11*z^4 + w^2)/60, then each n = 0,1,2,... can be written as F(x,y,z,w) with x,y,z,w nonnegative integers.
(ii) If (a,b,m) is among the triples (1,7,64), (1,11,12), (1,11,60), (2,1,25), (2,1,65), (2,11,4), (2,11,20), (2,11,60), (4,2,9), (4,7,64), (5,11,60), (6,1,10), then each n = 0,1,2,... can be written as a*x^6 + y^2 + (b*z^4 + w^2)/m with x,y,z,w nonnegative integers.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167--190.
Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
EXAMPLE
a(1) = 1 with 1 = 0^4 + 0^2 + (7^2 + 11*16^0)/60.
a(16) = 2 with 16 = 0^4 + 0^2 + (28^2 + 11*16)/60 = 1^4 + 2^2 + (22^2 + 11*16)/60.
a(71) = 1 with 71 = 0^4 + 2^2 + (62^2 + 11*16)/60.
a(78) = 1 with 78 = 2^4 + 5^2 + (47^2 + 11*16^0)/60.
a(247) = 1 with 247 = 3^4 + 3^2 + (97^2 + 11*16^0)/60.
a(542) = 1 with 542 = 3^4 + 21^2 + (32^2 + 11*16)/60.
a(1258) = 1 with 1258 = 2^4 + 15^2 + (247^2 + 11*16^0)/60.
a(1907) = 1 with 1907 = 0^4 + 0^2 + (338^2 + 11*16)/60.
a(5225) = 1 with 5225 = 5^4 + 58^2 + (272^2 + 11*16)/60.
a(19798) = 1 with 19798 = 1^4 + 137^2 + (248^2 + 11*16)/60.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[60(n-x^4-y^2)-11*16^z], r=r+1], {x, 0, (n-1)^(1/4)}, {y, 0, Sqrt[n-1-x^4]}, {z, 0, 1}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 06 2021
STATUS
approved