Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Feb 17 2022 13:20:40
%S 1,1,2,5,1,17,7,74,46,394,311,15,2484,2241,315,18108,17627,4585,
%T 149904,152839,57897,2240,1389456,1460944,705600,72800,14257440,
%U 15326180,8673060,1660120,160460640,175421214,110271546,31600800,1247400,1965444480,2177730270,1469308698,559402272,55135080
%N Irregular triangle read by rows: T(n,k) is the number of n-permutations whose third-longest cycle has length exactly k; n >= 0, 0 <= k <= floor(n/3).
%C If the permutation has no third cycle, then its third-longest cycle is defined to have length 0.
%H Alois P. Heinz, <a href="/A350015/b350015.txt">Rows n = 0..140, flattened</a>
%H Steven Finch, <a href="http://arxiv.org/abs/2202.07621">Second best, Third worst, Fourth in line</a>, arxiv:2202.07621 [math.CO], 2022.
%F Sum_{k=0..floor(n/3)} k * T(n,k) = A332852(n) for n >= 3. - _Alois P. Heinz_, Dec 12 2021
%e Triangle begins:
%e [0] 1;
%e [1] 1;
%e [2] 2;
%e [3] 5, 1;
%e [4] 17, 7;
%e [5] 74, 46;
%e [6] 394, 311, 15;
%e [7] 2484, 2241, 315;
%e [8] 18108, 17627, 4585;
%e [9] 149904, 152839, 57897, 2240;
%e ...
%p b:= proc(n, l) option remember; `if`(n=0, x^l[1], add((j-1)!*
%p b(n-j, sort([l[], j])[2..4])*binomial(n-1, j-1), j=1..n))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
%p seq(lprint(T(n)), n=0..14); # _Alois P. Heinz_, Dec 11 2021
%t b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[(j - 1)!*b[n - j, Sort[Append[l, j]][[2 ;; 4]]]*Binomial[n - 1, j - 1], {j, 1, n}]];
%t T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
%t Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 28 2021, after _Alois P. Heinz_ *)
%Y Column 0 gives 1 together with A000774.
%Y Row sums give A000142.
%Y Cf. A126074, A145877, A332852, A349979, A349980, A350016, A350273, A350274.
%K nonn,tabf
%O 0,3
%A _Steven Finch_, Dec 08 2021