login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000774
a(n) = n!*(1 + Sum_{i=1..n} 1/i).
16
1, 2, 5, 17, 74, 394, 2484, 18108, 149904, 1389456, 14257440, 160460640, 1965444480, 26029779840, 370643938560, 5646837369600, 91657072281600, 1579093018675200, 28779361764249600, 553210247226470400, 11185850044938240000, 237335752951879680000
OFFSET
0,2
COMMENTS
Number of {12,12*,21}-avoiding signed permutations in the hyperoctahedral group.
Let M be the n X n matrix with M( i, i ) = i+1, other entries = 1. Then a(n) = det(M); example: a(3) = 17 = det([2, 1, 1; 1, 3, 1; 1, 1, 4]). - Philippe Deléham, Jun 13 2005.
With offset 1: number of permutations of the n-set into at most two cycles. - Joerg Arndt, Jun 22 2009
A ball goes with probability 1/(k+1) from place k to a place j with j=0..k; a(n)/n! is the average number of steps from place n to place 0. - Paul Weisenhorn, Jun 03 2010
a(n) is a multiple of A025527(n). - Charles R Greathouse IV, Oct 16 2012
LINKS
Jean-Christophe Aval, Samuele Giraudo, Théo Karaboghossian, and Adrian Tanasa, Graph operads: general construction and natural extensions of canonical operads, arXiv:1912.06563 [math.CO], 2019.
Jean-Christophe Aval, Samuele Giraudo, Théo Karaboghossian, Adrian Tanasa, Graph insertion operads, arXiv:2002.10926 [math.CO], 2020.
Brant Jones, Katelynn D. Kochalski, Sarah Loeb, and Julia C. Walk, Strategy-indifferent games of best choice, arXiv:2107.04872 [math.CO], 2021.
Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
Sergey Kitaev and Jeffrey Remmel, Quadrant Marked Mesh Patterns, J. Int. Seq. 15 (2012) # 12.4.7.
C. Lenormand, Arbres et permutations II, see p. 9.
T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285-1332.
FORMULA
E.g.f.: A(x) = (1-x)^-1 * (1 - log(1-x)).
a(n+1) = (n+1)*a(n) + n!. - Jon Perry, Sep 26 2004
a(n) = A000254(n) + n!. - Mark van Hoeij, Jul 06 2010
G.f.: 1+x = Sum_{n>=0} a(n) * x^n / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Mar 01 2012
a(n) = Sum_{k=0..n} (k+1)*|s(n,k)|, where s(n,k) are Stirling numbers of the first kind (A008275). - Peter Luschny, Oct 16 2012
Conjecture: a(n) +(-2*n+1)*a(n-1) +(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 26 2012
EXAMPLE
(1-x)^-1 * (1 - log(1-x)) = 1 + 2*x + 5/2*x^2 + 17/6*x^3 + ...
G.f.: 1+x = 1/(1+x) + 2*x/((1+x)*(1+2*x)) + 5*x^2/((1+x)*(1+2*x)*(1+3*x)) + 17*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 74*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
MAPLE
A000774 := proc(n) local i, j; j := 0; for i to n do j := j+1/i od; (j+1)*n! end;
ZL :=[S, {S = Set(Cycle(Z), 3 > card)}, labelled]: seq(combstruct[count](ZL, size=n), n=1..20); # Zerinvary Lajos, Mar 25 2008
a[0]:=1: p:=1: for n from 1 to 20 do
a[n]:=n*a[n-1]+p: p:=p*n: end do: # Paul Weisenhorn, Jun 03 2010
MATHEMATICA
Table[n!(1+Sum[1/i, {i, n}]), {n, 0, 30}] (* Harvey P. Dale, Oct 03 2011 *)
PROG
(PARI) a(n)=n!*(1+sum(j=1, n, 1/j ));
(PARI) {a(n)=if(n==0, 1, polcoeff(1+x-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j*x+x*O(x^n)) )), n))} /* Paul D. Hanna, Mar 01 2012 */
CROSSREFS
Cf. A000254, A000776. Same as A081046 apart from signs.
Sequence in context: A136726 A112831 A081046 * A260948 A259870 A348878
KEYWORD
nonn,easy
STATUS
approved