The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000777 a(n) = (n+2)*Catalan(n) - 1. 3
 1, 2, 7, 24, 83, 293, 1055, 3860, 14299, 53481, 201551, 764217, 2912167, 11143499, 42791039, 164812364, 636438059, 2463251009, 9552773999, 37112526989, 144410649239, 562724141459, 2195581527359, 8576490341249, 33537507830423, 131272552839203, 514285886020255 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS T. D. Noe, Table of n, a(n) for n = 0..200 Boothby, T.; Burkert, J.; Eichwald, M.; Ernst, D. C.; Green, R. M.; Macauley, M. On the cyclically fully commutative elements of Coxeter groups, J. Algebr. Comb. 36, No. 1, 123-148 (2012), Table 1 type B. C. K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), no. 4, 1285-1332. FORMULA a(n) = (binomial(2*n,n)/(n+1))*(n+2) - 1. - Zerinvary Lajos, Jun 25 2006 G.f.: (1/x)*(1/2 + (6*x-1)/(2*sqrt(1-4*x))-x/(1-x)). - Vladimir Kruchinin, Aug 18 2010 D-finite with recurrence: (n+1)*a(n) + 4*(-3*n+1)*a(n-1) + 5*(9*n-13)*a(n-2) + 2*(-29*n+72)*a(n-3) + 12*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jun 11 2019 MAPLE [seq((binomial(2*n, n)/(n+1))*(n+2)-1, n=0..27)]; # Zerinvary Lajos, Jun 25 2006 MATHEMATICA Table[(n + 2)*CatalanNumber[n] - 1, {n, 0, 20}] (* T. D. Noe, Jun 20 2012 *) PROG (PARI) a(n) = (n+2)*binomial(2*n, n)/(n+1) - 1; \\ Michel Marcus, Sep 11 2016 (MAGMA) [(n+2)*Catalan(n)-1: n in [0..30]]; // Vincenzo Librandi, Sep 11 2016 CROSSREFS a(n) = A038665(n-1) - 1. Cf. A000984, A000108. Sequence in context: A020727 A329274 A088854 * A144170 A297345 A052986 Adjacent sequences:  A000774 A000775 A000776 * A000778 A000779 A000780 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)