login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081046
Difference of the first two Stirling numbers of the first kind.
5
1, -2, 5, -17, 74, -394, 2484, -18108, 149904, -1389456, 14257440, -160460640, 1965444480, -26029779840, 370643938560, -5646837369600, 91657072281600, -1579093018675200, 28779361764249600, -553210247226470400
OFFSET
0,2
FORMULA
a(n) = s(n, 1)-s(n, 2), s(n, m) = signed Stirling number of the first kind.
E.g.f.: (1+x)^-1 * (1-log(1+x)).
Conjecture: a(n) +(2*n-1)*a(n-1) +(n-1)^2*a(n-2)=0. - R. J. Mathar, Oct 27 2014
MATHEMATICA
Table[StirlingS1[n+1, 1] - StirlingS1[n+1, 2], {n, 0, 20}] (* or *) Table[(-1)^n n! (1+HarmonicNumber[n]), {n, 0, 20}] (* Jean-François Alcover, Feb 11 2016 *)
PROG
(PARI) a(n) = stirling(n+1, 1, 1) - stirling(n+1, 2, 1); \\ Michel Marcus, Feb 11 2016
CROSSREFS
Cf. A000254, A008275. Same as A000774 apart from signs.
Sequence in context: A007868 A136726 A112831 * A000774 A260948 A259870
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 05 2003
STATUS
approved