login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Difference of the first two Stirling numbers of the first kind.
5

%I #17 Feb 13 2016 03:56:35

%S 1,-2,5,-17,74,-394,2484,-18108,149904,-1389456,14257440,-160460640,

%T 1965444480,-26029779840,370643938560,-5646837369600,91657072281600,

%U -1579093018675200,28779361764249600,-553210247226470400

%N Difference of the first two Stirling numbers of the first kind.

%F a(n) = s(n, 1)-s(n, 2), s(n, m) = signed Stirling number of the first kind.

%F E.g.f.: (1+x)^-1 * (1-log(1+x)).

%F Conjecture: a(n) +(2*n-1)*a(n-1) +(n-1)^2*a(n-2)=0. - _R. J. Mathar_, Oct 27 2014

%t Table[StirlingS1[n+1, 1] - StirlingS1[n+1, 2], {n, 0, 20}] (* or *) Table[(-1)^n n! (1+HarmonicNumber[n]), {n, 0, 20}] (* _Jean-François Alcover_, Feb 11 2016 *)

%o (PARI) a(n) = stirling(n+1, 1, 1) - stirling(n+1, 2, 1); \\ _Michel Marcus_, Feb 11 2016

%Y Cf. A000254, A008275. Same as A000774 apart from signs.

%K easy,sign

%O 0,2

%A _Paul Barry_, Mar 05 2003