login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260948
Coefficients in asymptotic expansion of sequence A259870.
5
1, 2, 5, 17, 74, 395, 2526, 19087, 168603, 1723065, 20148031, 266437102, 3938754720, 64391209604, 1152961464743, 22424127879610, 470399253269776, 10579865622308851, 253840801521314095, 6468953273455413674, 174452533187403980841, 4962228907578051232358
OFFSET
0,2
LINKS
Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
FORMULA
a(k) ~ 2 * exp(-1) * (k-1)! / (log(2))^k.
EXAMPLE
A259870(n)/((n-1)!/exp(1)) ~ 1 + 2/n + 5/n^2 + 17/n^3 + 74/n^4 + 395/n^5 + ...
MATHEMATICA
nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] - 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 05 2015
STATUS
approved