The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260950 Coefficients in asymptotic expansion of sequence A259872. 5
 1, -2, 1, 1, -10, -61, -382, -3489, -39001, -484075, -6619449, -99610098, -1638687448, -29255834780, -563343011377, -11639759292186, -256916737692132, -6034068201092777, -150271333127027481, -3955735249215111270, -109757859467421502791 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315. FORMULA a(k) ~ -2 * exp(-1) * (k-1)! / (log(2))^k. EXAMPLE A259872(n)/((n-1)!/exp(1)) ~ 1 - 2/n + 1/n^2 + 1/n^3 - 10/n^4 - 61/n^5 - ... MATHEMATICA nmax = 25; b = CoefficientList[Assuming[Element[x, Reals], Series[x/(ExpIntegralEi[1 + 1/x]/Exp[1 + 1/x] + 1)^2, {x, 0, nmax+1}]], x]; Table[Sum[b[[k+1]]*StirlingS2[n, k-1], {k, 1, n+1}], {n, 0, nmax}] CROSSREFS Cf. A259872, A260578, A260948, A260949. Sequence in context: A154989 A064307 A165883 * A110905 A205447 A297544 Adjacent sequences:  A260947 A260948 A260949 * A260951 A260952 A260953 KEYWORD sign AUTHOR Vaclav Kotesovec, Aug 05 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:40 EST 2021. Contains 349589 sequences. (Running on oeis4.)