login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260947
Least positive integer k < prime(n) such that k = i + j for some 0 < i < j for which i,j,k and i*j*k are all primitive roots modulo prime(n), or 0 if no such k exists.
3
0, 0, 0, 0, 8, 0, 10, 13, 15, 10, 24, 15, 13, 29, 15, 8, 8, 17, 13, 28, 20, 35, 8, 19, 15, 15, 11, 7, 24, 17, 29, 8, 24, 15, 10, 13, 20, 18, 15, 5, 8, 28, 47, 15, 5, 41, 29, 11, 8, 31, 17, 21, 51, 24, 10, 15, 10, 21, 11, 15
OFFSET
1,5
COMMENTS
Conjecture: a(n) > 0 for all n > 6. In other words, for any prime p > 13, there are three distinct elements a,b,c of {1,...,p-1} with a+b = c such that a,b,c and a*b*c are all primitive roots modulo p.
EXAMPLE
a(5) = 8 since 2 + 6 = 8, and the four numbers 2, 6, 8 and 2*6*8=96 are all primitive roots modulo prime(5) = 11.
MATHEMATICA
SQ[n_]:=IntegerQ[Sqrt[n]]
Dv[n_]:=Divisors[Prime[n]-1]
Do[Do[Do[If[Mod[k^(Part[Dv[n], t]), Prime[n]]==1, Goto[bb]], {t, 1, Length[Dv[n]]-1}]; Do[Do[If[Mod[j^(Part[Dv[n], t]), Prime[n]]==1||Mod[(k-j)^(Part[Dv[n], t]), Prime[n]]==1||Mod[((k-j)j*k)^(Part[Dv[n], t]), Prime[n]]==1, Goto[cc]]; Continue, {t, 1, Length[Dv[n]]-1}]; Print[n, " ", k]; Goto[aa]; Label[cc]; Continue, {j, 1, (k-1)/2}]; Label[bb]; Continue, {k, 1, Prime[n]-1}]; Print[n, " ", 0]; Label[aa]; Continue, {n, 1, 60}]
CROSSREFS
Sequence in context: A176460 A320378 A228412 * A070489 A112268 A077062
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 05 2015
STATUS
approved