login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260944
Expansion of phi(-x^4) * psi(-x^6) / chi(-x^3) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
2
1, 0, 0, 1, -2, 0, 0, -2, 0, 1, 0, 0, 1, -2, 0, 1, 0, 0, 1, 0, 0, 1, -2, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, -2, 0, 0, 0, 0, 0, -2, 0, 2, -2, 0, 1, 0, 0, 0, -4, 0, 0, 0, 0, 1, 0, 0, 1, -2, 0, 1, 0, 0, 2, 0, 0, 0, -2, 0, 2, -2, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-7/8) * eta(q^4)^2 * eta(q^6)^2 * eta(q^24) / (eta(q^3) * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ 0, 0, 1, -2, 0, -1, 0, -1, 1, 0, 0, -2, 0, 0, 1, -1, 0, -1, 0, -2, 1, 0, 0, -2, ...].
a(3*n) = A131962(n). a(3*n + 1) = -2 * A112607(n-1). a(3*n + 2) = 0.
EXAMPLE
G.f. = 1 + x^3 - 2*x^4 - 2*x^7 + x^9 + x^12 - 2*x^13 + x^15 + x^18 + x^21 + ...
G.f. = q^7 + q^31 - 2*q^39 - 2*q^63 + q^79 + q^103 - 2*q^111 + q^127 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^4] EllipticTheta[ 2, Pi/4, x^3] QPochhammer[ -x^3, x^3] / (2^(1/2) x^(3/4)), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^6 + A)^2 * eta(x^24 + A) / (eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A)), n))};
CROSSREFS
Sequence in context: A047919 A272624 A271223 * A101670 A378373 A351978
KEYWORD
sign
AUTHOR
Michael Somos, Aug 04 2015
STATUS
approved