OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q)^2 * eta(q^6) * eta(q^24)^2 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ -2, -1, -1, -1, -2, -1, -2, -1, -1, -1, -2, 0, -2, -1, -1, -1, -2, -1, -2, -1, -1, -1, -2, -2, ...].
EXAMPLE
G.f. = x - 2*x^2 + x^4 + x^7 - 2*x^11 + x^13 - 2*x^14 + 2*x^16 + x^19 + ...
G.f. = q^13 - 2*q^21 + q^37 + q^61 - 2*q^93 + q^109 - 2*q^117 + 2*q^133 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] EllipticTheta[ 2, 0, x^6] QPochhammer[ -x^3, x^3] / (2 x^(1/2)), {x, 0, n}];
eta[q_] := q^(1/24)*QPochhammer[q]; CoefficientList[Series[ q^(-5/8)* eta[q]^2*eta[q^6]*eta[q^24]^2/(eta[q^2]*eta[q^3]*eta[q^12]), {q, 0, 50}], q] (* G. C. Greubel, Aug 01 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A) * eta(x^24 + A)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
sign,changed
AUTHOR
Michael Somos, Aug 04 2015
STATUS
approved