The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131963 Expansion of f(x, x^2) * f(x^4, x^12) in powers of x where f(, ) is Ramanujan's general theta function. 11
 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 2, 0, 0, 1, 0, 2, 1, 3, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 3, 0, 1, 0, 0, 1, 2, 2, 0, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of psi(x^4) * phi(-x^3) / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions. Expansion of q^(-13/24) * eta(q^2) * eta(q^3)^2 * eta(q^8)^2 / (eta(q) * eta(q^4) * eta(q^6)) in powers of q. Euler transform of period 24 sequence [ 1, 0, -1, 1, 1, -1, 1, -1, -1, 0, 1, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, 1, -2, ...]. a(25*n + 13) = a(n). a(25*n + 3) = a(25*n + 8) = a(25*n + 18) = a(25*n + 23) = 0. 2 * a(n) = A123484(24*n + 13). EXAMPLE G.f. = 1 + x + x^2 + x^4 + 2*x^5 + x^6 + x^7 + x^9 + x^11 + 2*x^12 + x^13 + ... G.f. = q^13 + q^37 + q^61 + q^109 + 2*q^133 + q^157 + q^181 + q^229 + q^277 + ... MATHEMATICA a[ n_] := If[ n < 0, 0, With[ {m = 24 n + 13}, DivisorSum[ m, KroneckerSymbol[ -12, #] Mod[m/#, 2] &] / 2]]; (* Michael Somos, Nov 04 2015 *) a[ n_] := SeriesCoefficient[(1/2) x^(-1/2) EllipticTheta[ 4, 0, x^3] QPochhammer[ -x, x] EllipticTheta[ 2, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 04 2015 *) PROG (PARI) {a(n) = if( n<0, 0, n = 24*n + 13; sumdiv(n, d, kronecker( -12, d) * (n/d %2)) / 2)}; (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))}; CROSSREFS Cf. A123484. Sequence in context: A156709 A081400 A328194 * A130538 A276007 A078659 Adjacent sequences:  A131960 A131961 A131962 * A131964 A131965 A131966 KEYWORD nonn AUTHOR Michael Somos, Aug 02 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 01:31 EDT 2021. Contains 345394 sequences. (Running on oeis4.)