login
A328194
Maximum length of a divisibility chain of consecutive nontrivial divisors of n (greater than 1 and less than n).
10
0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 4, 1, 1, 1, 1, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 1, 0, 1, 1, 5, 1, 2, 0, 2, 1, 1, 0, 1, 0, 1, 2, 2, 1, 2, 0, 2, 3, 1, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 2, 3, 0, 2, 0, 3, 1
OFFSET
1,8
COMMENTS
The nontrivial divisors of n are row n of A163870.
LINKS
EXAMPLE
The nontrivial divisors of 272 are {2, 4, 8, 16, 17, 34, 68, 136} with divisibility chains {{2, 4, 8, 16}, {17, 34, 68, 136}}, so a(272) = 4.
MATHEMATICA
Table[Switch[n, 1, 0, _?PrimeQ, 0, _, Max@@Length/@Split[DeleteCases[Divisors[n], 1|n], Divisible[#2, #1]&]], {n, 100}]
PROG
(PARI) A328194(n) = if(1==n || isprime(n), 0, my(divs=divisors(n), rl=0, ml=1); for(i=2, #divs-1, if(!(divs[i]%divs[i-1]), rl++, ml = max(rl, ml); rl=1)); max(ml, rl)); \\ Antti Karttunen, Dec 07 2024
CROSSREFS
Positions of 1's are A328028 without 1.
The version with all divisors allowed is A328162.
Allowing n as a divisor of n gives A328195.
Indices of terms greater than 1 are A328189.
The maximum run-length of divisors of n is A055874(n).
Sequence in context: A156709 A081400 A378663 * A131963 A130538 A276007
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2019
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Dec 07 2024
STATUS
approved