|
|
A328197
|
|
Smallest prime (p) of six consecutive primes (p,q,r,u,v,w) for which the conic section discriminant (Delta) for general conic section px^2 + qy^2 + rz^2 + 2uyz + 2vxz + 2wxy = 0 is a fourth power.
|
|
0
|
|
|
430487, 1288337, 2317097, 3047311, 6045077, 10593617, 11166347, 14122697, 14774537, 16622717, 17905427, 17956637, 18614777, 21677701, 23874467, 24148547, 25109057, 28198187, 31543847, 34953227, 35542667, 35761409, 40321007, 41627671, 41961587, 44536469, 46184627
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Delta = pqr + 2uvw - pu^2 - qv^2 - rw^2 for the general conic section px^2 + qy^2 + rz^2 + 2uyz + 2vxz + 2wxy = 0.
|
|
LINKS
|
Table of n, a(n) for n=1..27.
|
|
EXAMPLE
|
For n = 1, (p,q,r,u,v,w) = (430487,430499,430511,430513,430517,430543), Delta = 1296 = 6^4. Hence, 430487 the smallest prime of the six is a member.
|
|
CROSSREFS
|
Cf. A000040.
Sequence in context: A051595 A234857 A186593 * A233620 A271110 A237926
Adjacent sequences: A328194 A328195 A328196 * A328198 A328199 A328200
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Philip Mizzi, Oct 07 2019
|
|
EXTENSIONS
|
More terms from Giovanni Resta, Oct 09 2019
|
|
STATUS
|
approved
|
|
|
|