OFFSET
1,4
COMMENTS
The number m = 2^n, n >= 0, is the smallest for which a(m) = n. - Marius A. Burtea, Nov 20 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000
FORMULA
a(p^k) = k for any prime number p and k >= 0. - Rémy Sigrist, Oct 05 2019
EXAMPLE
The divisors of 500 are {1,2,4,5,10,20,25,50,100,125,250,500}, with consecutive divisible pairs {1,2}, {2,4}, {5,10}, {10,20}, {25,50}, {50,100}, {125,250}, {250,500}, so a(500) = 8.
MATHEMATICA
Table[Length[Split[Divisors[n], !Divisible[#2, #1]&]]-1, {n, 100}]
PROG
(PARI) a(n) = {my(d=divisors(n), nb=0); for (i=2, #d, if ((d[i] % d[i-1]) == 0, nb++)); nb; } \\ Michel Marcus, Oct 05 2019
(Magma) f:=func<n, i|D[i+1] mod D[i] eq 0 where D is Divisors(n) >; g:=func<k| #[i:i in [1..#Divisors(k)-1]| f(k, i)]>; [g(n):n in [1..100]]; // Marius A. Burtea, Nov 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 03 2019
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Feb 23 2023
STATUS
approved