login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076558
a(n) = r * min(e_1, ..., e_r), where n = p_1^e_1 . .... p_r^e_r is the canonical prime factorization of n, a(1) = 0.
3
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 4
OFFSET
1,4
COMMENTS
Omega(n) >= a(n) for n >= 1, where Omega(n) = the number of prime factors of n, counting multiplicity.
Positions of records are A000079. - David A. Corneth, May 05 2020
FORMULA
a(n) = A001221(n) * A051904(n). - Antti Karttunen, Jul 12 2017
MATHEMATICA
a[n_] := Module[{pf}, pf = Transpose[FactorInteger[n]]; Length[pf[[1]]]*Min[pf[[2]]]]; Table[a[i] - Boole[i == 1], {i, 100}]
(* Second program: *)
Table[Length[#] Min[#] - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
PROG
(Python)
from sympy import factorint
def a(n):
f=factorint(n)
l=[f[p] for p in f]
return 0 if n==1 else len(l)*min(l)
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 13 2017
(PARI) a(n) = if(n == 1, 0, my(e = factor(n)[, 2]); vecmin(e) * #e); \\ Amiram Eldar, Sep 08 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Joseph L. Pe, Nov 10 2002
EXTENSIONS
a(1)=0 prepended by Antti Karttunen, Jul 12 2017
STATUS
approved