login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304687
Start with the multiset of prime multiplicities of n. Given a multiset, take the multiset of its multiplicities. Repeat until a constant multiset {k,k,...,k} is reached, and set a(n) to the sum of this multiset (k times the length).
8
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 2, 2, 2, 2
OFFSET
1,4
LINKS
EXAMPLE
The following are examples showing the reduction of a multiset starting with the multiset of prime multiplicities of n.
a(60) = 2: {1,1,2} -> {1,2} -> {1,1}.
a(360) = 3: {1,2,3} -> {1,1,1}.
a(1260) = 4: {1,1,2,2} -> {2,2}.
a(21492921450) = 6: {1,1,2,2,3,3} -> {2,2,2}.
MAPLE
a:= proc(n) map(i-> i[2], ifactors(n)[2]);
while nops({%[]})>1 do [coeffs(add(x^i, i=%))] od;
add(i, i=%)
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 17 2018
MATHEMATICA
Table[If[n==1, 0, NestWhile[Sort[Length/@Split[#]]&, Sort[Last/@FactorInteger[n]], !SameQ@@#&]//Total], {n, 360}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2018
STATUS
approved