

A304690


Primes p > 5 such that no polygonal number P_s(k) (with s >= 3, k >= 5 ) is equal to p  1.


1



7, 11, 13, 17, 19, 23, 31, 41, 43, 47, 53, 59, 61, 73, 83, 89, 103, 107, 109, 131, 139, 151, 163, 167, 173, 179, 181, 193, 199, 223, 227, 229, 241, 251, 263, 269, 271, 283, 293, 311, 313, 347, 349, 353, 359, 383, 389, 419, 421, 431, 433, 439, 443, 463, 467, 479, 499, 503, 509, 521, 523, 557, 563, 571, 587, 593, 599
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

For all primes p > 5, at least one polygonal number exists with P_s(k) = p  1 when k = 3 or 4, dependent on p mod 6; this is why the sequence is defined for k >= 5.
Set of primes without {A304688} and {2,3,5}.


LINKS



MATHEMATICA

lst = {}; Do[
If[! Resolve[
Exists[{s, k},
Prime[m] == 1/2 k (4 + k (2 + s)  s) + 1 && s >= 3 && k >= 5],
Integers], lst = Union[lst, {Prime[m]}]], {m, 4, 150}]; lst


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



