|
|
A091554
|
|
Primes p such that k = 2p is the smallest positive solution to the equation sigma(p+k) = sigma(p) + sigma(k).
|
|
1
|
|
|
7, 11, 13, 17, 19, 23, 31, 53, 59, 73, 79, 89, 97, 103, 109, 113, 137, 139, 149, 157, 163, 181, 193, 211, 223, 227, 269, 281, 293, 313, 331, 337, 373, 389, 397, 409, 419, 421, 433, 463, 467, 487, 499, 509, 521, 523, 541, 547, 571, 599, 601, 617, 631, 641, 643
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Note that for all primes p > 3, sigma(3p) = sigma(p) + sigma(2p).
|
|
LINKS
|
Table of n, a(n) for n=1..55.
|
|
MATHEMATICA
|
lst={}; Do[p=Prime[n]; k=1; While[DivisorSigma[1, p+k]!=DivisorSigma[1, p]+DivisorSigma[1, k], k++ ]; If[k==2p, AppendTo[lst, p]], {n, 3, 200}]; lst
|
|
CROSSREFS
|
Cf. A066435 (least k such that sigma(n+k)=sigma(n)+sigma(k)).
Sequence in context: A040121 A156114 A304690 * A111980 A108811 A038961
Adjacent sequences: A091551 A091552 A091553 * A091555 A091556 A091557
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
T. D. Noe, Jan 20 2004
|
|
STATUS
|
approved
|
|
|
|