login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091555
Partial sums of Mertens's function (A002321).
2
1, 1, 0, -1, -3, -4, -6, -8, -10, -11, -13, -15, -18, -20, -21, -22, -24, -26, -29, -32, -34, -35, -37, -39, -41, -42, -43, -44, -46, -49, -53, -57, -60, -62, -63, -64, -66, -67, -67, -67, -68, -70, -73, -76, -79, -81, -84, -87, -90, -93, -95, -97, -100, -103, -105, -107
OFFSET
1,5
LINKS
FORMULA
a(n) = Sum_{k=1..n} mu(k)*(n-k+1) where mu=A008683, the Moebius function. - Reinhard Zumkeller, Nov 06 2006
G.f.: (1/(1 - x)^2)*Sum_{k>=1} mu(k)*x^k. - Ilya Gutkovskiy, Mar 11 2018
MATHEMATICA
Table[Sum[MoebiusMu[k] (n - k + 1), {k, 1, n}], {n , 1, 56}] (* Indranil Ghosh, Mar 16 2017 *)
Accumulate[Table[Sum[MoebiusMu[k], {k, 1, n}], {n, 1, 100}]] (* Vaclav Kotesovec, Nov 30 2024 *)
PROG
(PARI) for(n=1, 56, print1(sum(k=1, n, moebius(k) * (n - k + 1)), ", ")) \\ Indranil Ghosh, Mar 16 2017
CROSSREFS
Sequence in context: A246705 A300997 A024672 * A184398 A024665 A027669
KEYWORD
sign
AUTHOR
Jon Perry, Mar 04 2004
EXTENSIONS
More terms from Reinhard Zumkeller, Nov 06 2006
STATUS
approved