login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091551
Second column (k=3) sequence of array ((7,2)-Stirling2) divided by 14.
1
1, 228, 83232, 46854720, 38109367296, 42479241412608, 62290218157719552, 116373513947009679360, 270010358636135897235456, 762020881523854021734432768, 2571195906705444158241905836032
OFFSET
0,2
FORMULA
a(n)= product(5*j+2, j=0..n-1)*(-3*product(5*j+1, j=0..n-1) + product(5*j+3, j=0..n-1))/(3!*14), n>=2. From eq.12 of the Blasiak et al. reference given in A007840 with r=7, s=2, k=3.
a(n)= (5^(2*n))*risefac(2/5, n)*(-3*risefac(1/5, n) + risefac(3/5, n))/(3!*14), n>=2, with risefac(x, n)=Pochhammer(x, n).
E.g.f.: (hypergeom([2/5, 3/5], [], 25*x) - 3*hypergeom([1/5, 2/5], [], 25*x) + 2)/(3!*14).
CROSSREFS
Cf. A091550 (second column of (6, 2)-Stirling2 array), A091552 (second column of (8, 2)-Stirling2 array).
Sequence in context: A201238 A220624 A098246 * A033528 A086002 A061783
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 13 2004
STATUS
approved