login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091550
Second column (k=3) sequence of array A091746 ((6,2)-Stirling2) divided by 12.
3
1, 160, 39900, 15120000, 8202070800, 6058891238400, 5860547004312000, 7196668193594880000, 10944624305020966560000, 20199809308312018344960000, 44490168120726255724917120000, 115290834599202214240544256000000
OFFSET
2,2
FORMULA
a(n)=(2^(4*n))*risefac(1/2, n)*(-3*risefac(1/4, n) + risefac(3/4, n))/(3!*12), n>=2, with risefac(x, n)=Pochhammer(x, n).
E.g.f.: (hypergeom([1/2, 3/4], [], 16*x) - 3*hypergeom([1/4, 1/2], [], 16*x) + 2)/(3!*12).
a(n)=(2^n)*product(2*j+1, j=0..n-1)* (-3*product(4*j+1, j=0..n-1) + product(4*j+3, j=0..n-1))/(3!*12), n>=2. From eq.12 of the Blasiak et al. reference given in A078740 with r=6, s=2, k=3.
CROSSREFS
Cf. A091539 (second column of (5, 2)-Stirling2 array), A091550 (second column of (7, 2)-Stirling2 array).
Sequence in context: A183769 A190937 A163056 * A027553 A159378 A172074
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 13 2004
STATUS
approved