Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Sep 30 2012 07:29:24
%S 1,160,39900,15120000,8202070800,6058891238400,5860547004312000,
%T 7196668193594880000,10944624305020966560000,
%U 20199809308312018344960000,44490168120726255724917120000,115290834599202214240544256000000
%N Second column (k=3) sequence of array A091746 ((6,2)-Stirling2) divided by 12.
%F a(n)=(2^(4*n))*risefac(1/2, n)*(-3*risefac(1/4, n) + risefac(3/4, n))/(3!*12), n>=2, with risefac(x, n)=Pochhammer(x, n).
%F E.g.f.: (hypergeom([1/2, 3/4], [], 16*x) - 3*hypergeom([1/4, 1/2], [], 16*x) + 2)/(3!*12).
%F a(n)=(2^n)*product(2*j+1, j=0..n-1)* (-3*product(4*j+1, j=0..n-1) + product(4*j+3, j=0..n-1))/(3!*12), n>=2. From eq.12 of the Blasiak et al. reference given in A078740 with r=6, s=2, k=3.
%Y Cf. A091539 (second column of (5, 2)-Stirling2 array), A091550 (second column of (7, 2)-Stirling2 array).
%K nonn,easy
%O 2,2
%A _Wolfdieter Lang_, Feb 13 2004