login
Start with the multiset of prime multiplicities of n. Given a multiset, take the multiset of its multiplicities. Repeat until a constant multiset {k,k,...,k} is reached, and set a(n) to the sum of this multiset (k times the length).
8

%I #14 Jun 05 2018 14:18:16

%S 0,1,1,2,1,2,1,3,2,2,1,2,1,2,2,4,1,2,1,2,2,2,1,2,2,2,3,2,1,3,1,5,2,2,

%T 2,4,1,2,2,2,1,3,1,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,1,2,1,2,2,6,2,3,1,2,

%U 2,3,1,2,1,2,2,2,2,3,1,2,4,2,1,2,2,2,2

%N Start with the multiset of prime multiplicities of n. Given a multiset, take the multiset of its multiplicities. Repeat until a constant multiset {k,k,...,k} is reached, and set a(n) to the sum of this multiset (k times the length).

%H Alois P. Heinz, <a href="/A304687/b304687.txt">Table of n, a(n) for n = 1..20000</a>

%e The following are examples showing the reduction of a multiset starting with the multiset of prime multiplicities of n.

%e a(60) = 2: {1,1,2} -> {1,2} -> {1,1}.

%e a(360) = 3: {1,2,3} -> {1,1,1}.

%e a(1260) = 4: {1,1,2,2} -> {2,2}.

%e a(21492921450) = 6: {1,1,2,2,3,3} -> {2,2,2}.

%p a:= proc(n) map(i-> i[2], ifactors(n)[2]);

%p while nops({%[]})>1 do [coeffs(add(x^i, i=%))] od;

%p add(i, i=%)

%p end:

%p seq(a(n), n=1..100); # _Alois P. Heinz_, May 17 2018

%t Table[If[n==1,0,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],!SameQ@@#&]//Total],{n,360}]

%Y Cf. A001221, A001222, A071625, A112798, A181819, A182850, A182857, A304465, A304634, A304636.

%K nonn

%O 1,4

%A _Gus Wiseman_, May 16 2018