Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jun 05 2018 14:18:16
%S 0,1,1,2,1,2,1,3,2,2,1,2,1,2,2,4,1,2,1,2,2,2,1,2,2,2,3,2,1,3,1,5,2,2,
%T 2,4,1,2,2,2,1,3,1,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,1,2,1,2,2,6,2,3,1,2,
%U 2,3,1,2,1,2,2,2,2,3,1,2,4,2,1,2,2,2,2
%N Start with the multiset of prime multiplicities of n. Given a multiset, take the multiset of its multiplicities. Repeat until a constant multiset {k,k,...,k} is reached, and set a(n) to the sum of this multiset (k times the length).
%H Alois P. Heinz, <a href="/A304687/b304687.txt">Table of n, a(n) for n = 1..20000</a>
%e The following are examples showing the reduction of a multiset starting with the multiset of prime multiplicities of n.
%e a(60) = 2: {1,1,2} -> {1,2} -> {1,1}.
%e a(360) = 3: {1,2,3} -> {1,1,1}.
%e a(1260) = 4: {1,1,2,2} -> {2,2}.
%e a(21492921450) = 6: {1,1,2,2,3,3} -> {2,2,2}.
%p a:= proc(n) map(i-> i[2], ifactors(n)[2]);
%p while nops({%[]})>1 do [coeffs(add(x^i, i=%))] od;
%p add(i, i=%)
%p end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, May 17 2018
%t Table[If[n==1,0,NestWhile[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],!SameQ@@#&]//Total],{n,360}]
%Y Cf. A001221, A001222, A071625, A112798, A181819, A182850, A182857, A304465, A304634, A304636.
%K nonn
%O 1,4
%A _Gus Wiseman_, May 16 2018