The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060680 Smallest difference between consecutive divisors of n. 30
 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 2, 1, 22, 1, 4, 1, 2, 1, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 2, 1, 46, 1, 6, 1, 2, 1, 52, 1, 4, 1, 2, 1, 58, 1, 60, 1, 2, 1, 4, 1, 66, 1, 2, 1, 70, 1, 72, 1, 2, 1, 4, 1, 78, 1, 2, 1, 82, 1, 4, 1, 2, 1, 88, 1, 6, 1, 2, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS a(n) = 1 if n is even and a(n) is even if n is odd. a(n) = least m>0 such that n!+1+m and n-m are not relatively prime. - Clark Kimberling, Jul 21 2012 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 2..10000 A. Balog, P. ErdÅ‘s and G. Tenenbaum, On Arithmetic Functions Involving Consecutive Divisors, In: Analytical Number Theory, pp. 77-90, Birkhauser, Basel, 1990. FORMULA a(2n+1)= A060684(n). EXAMPLE For n=35, divisors={1,5,7,35}; differences={4,2,28}; a(35) = smallest difference = 2. MAPLE read("transforms") : A060680 := proc(n)     sort(convert(numtheory[divisors](n), list)) ;     DIFF(%) ;     min(op(%)) ; end proc: seq(A060680(n), n=2..60) ; # R. J. Mathar, May 23 2018 MATHEMATICA a[n_ ] := Min@@(Drop[d=Divisors[n], 1]-Drop[d, -1]) PROG (Haskell) a060680 = minimum . a193829_row  -- Reinhard Zumkeller, Jun 25 2015 CROSSREFS Cf. A060681 (largest difference), A060682, A060683, A060684. Cf. A193829, A027750. Sequence in context: A281071 A256908 A258409 * A057237 A187730 A049559 Adjacent sequences:  A060677 A060678 A060679 * A060681 A060682 A060683 KEYWORD nonn AUTHOR Labos Elemer, Apr 19 2001 EXTENSIONS Corrected by David W. Wilson, May 04 2001 Edited by Dean Hickerson, Jan 22 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 16:31 EDT 2020. Contains 337265 sequences. (Running on oeis4.)