OFFSET
1,3
COMMENTS
For prime n, a(n) = n - 1. Question: do nonprimes exist with this property?
Answer: No. If n is composite then a(n) < n - 1. - Charles R Greathouse IV, Dec 09 2013
Lehmer's totient problem (1932): are there composite numbers n such that a(n) = phi(n)? - Thomas Ordowski, Nov 08 2015
a(n) = 1 for n in A209211. - Robert Israel, Nov 09 2015
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, B37.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Lehmer's Totient Problem
FORMULA
a(p^m) = a(p) = p - 1 for prime p and m > 0. - Thomas Ordowski, Dec 10 2013
From Antti Karttunen, Sep 09 2018: (Start)
(End)
EXAMPLE
a(9) = 2 because phi(9) = 6 and gcd(8, 6) = 2.
a(10) = 1 because phi(10) = 4 and gcd(9, 4) = 1.
MAPLE
seq(igcd(n-1, numtheory:-phi(n)), n=1..100); # Robert Israel, Nov 09 2015
MATHEMATICA
Table[GCD[n - 1, EulerPhi[n]], {n, 93}] (* Michael De Vlieger, Nov 09 2015 *)
PROG
(PARI) a(n)=gcd(eulerphi(n), n-1) \\ Charles R Greathouse IV, Dec 09 2013
(Python)
from sympy import totient, gcd
print([gcd(totient(n), n - 1) for n in range(1, 101)]) # Indranil Ghosh, Mar 27 2017
(Magma) [Gcd(n-1, EulerPhi(n)): n in [1..80]]; // Vincenzo Librandi, Oct 13 2018
CROSSREFS
Cf. A000010, A002322, A039766, A063994, A160595, A209211, A219428, A264012, A264024, A280262, A283656, A283872, A284089, A284440, A318827, A318829, A318830, A330747 (ordinal transform), A340195.
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 28 2000
STATUS
approved