login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280262
Numbers n such that A187730(n) < A049559(n).
5
21, 33, 57, 65, 69, 77, 91, 93, 105, 129, 133, 141, 145, 161, 177, 185, 189, 201, 209, 213, 217, 225, 237, 249, 253, 265, 273, 297, 301, 305, 309, 321, 329, 341, 345, 369, 377, 381, 385, 393, 413, 417, 437, 441, 451, 453, 465, 469, 473, 481, 489, 497, 501, 505, 513, 517, 537, 545, 553, 559, 573
OFFSET
1,1
COMMENTS
Terms are not of the form p^k, where p is a prime.
There are no terms of the form 2p+1, where p is a prime.
The sequence contains all Carmichael numbers except A264012.
If n is in the sequence, then n-1 is not squarefree. - Thomas Ordowski, Jan 02 2017
Theorem: the set of such numbers has natural density 0. Proof: Let y = y(n) = loglog n /logloglog n. Using part 1 of Lemma 2.1 in paper 199 on my home page (joint with Luca), applied to the residue class 1: But for a set of n of density 0, for each integer d < y, there is a prime p|n with p == 1 (mod d). In particular, lambda(n) is divisible by every integer d up to y. Suppose now that gcd(lambda(n),n-1) < gcd(phi(n),n-1). Then there is a prime power q^a such that q^a | phi(n), q^a | n-1, and q^a does not divide lambda(n). Then, but for a set of n of density 0, we would have q^a > y. Since q | lambda(n), we have a at least 2. So, n-1 is divisible by some q^a > y with a >= 2. The set of such n has density 0. QED. - Carl Pomerance, Jan 02 2017
Number of terms < 10^k: 0, 8, 112, 1258, 13069, 132262, 1324263, 13229372, 132009236, ..., . Robert G. Wilson v, Jan 04 2017
If p and q are distinct primes == 3 (mod 4), then p*q is in the sequence. - Thomas Ordowski, Mar 30 2017
LINKS
MAPLE
select(t -> igcd(numtheory:-lambda(t), t-1) < igcd(numtheory:-phi(t), t-1), [$1..1000]);
MATHEMATICA
Select[Range@ 600, GCD[CarmichaelLambda@ #, # - 1] < GCD[# - 1, EulerPhi@ #] &] (* Michael De Vlieger, Dec 31 2016 *)
CROSSREFS
Subsequence of A033949.
Sequence in context: A070006 A189986 A190299 * A084109 A376543 A016105
KEYWORD
nonn
AUTHOR
STATUS
approved