login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016105
Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).
18
21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177, 201, 209, 213, 217, 237, 249, 253, 301, 309, 321, 329, 341, 381, 393, 413, 417, 437, 453, 469, 473, 489, 497, 501, 517, 537, 553, 573, 581, 589, 597, 633, 649, 669, 681, 713, 717, 721, 737, 749, 753, 781, 789
OFFSET
1,1
COMMENTS
Subsequence of A084109. - Ralf Stephan and David W. Wilson, Apr 17 2005
Subsequence of A046388. - Altug Alkan, Dec 10 2015
Subsequence of A339817. No common terms with A339870. - Antti Karttunen, Dec 26 2020
Named after the Venezuelan-American computer scientist Manuel Blum (b. 1938). - Amiram Eldar, Jun 06 2021
First introduced by Blum, Blum, & Shub for the generation of pseudorandom numbers and later applied (by Manuel Blum and other authors) to zero-knowledge proofs. - Charles R Greathouse IV, Sep 26 2024
REFERENCES
Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudorandom number generator, SIAM Journal on computing 15:2 (1986), pp. 364-383.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..26828 (all terms < 2^19; first 1000 terms from T. D. Noe)
Joe Hurd, Blum Integers, Talk at the Trinity College, Jan 20 1997.
Wikipedia, Blum integer.
FORMULA
a(n) = A195758(n) * A195759(n). - Reinhard Zumkeller, Sep 23 2011
a(n) ~ 4n log n/log log n. - Charles R Greathouse IV, Sep 17 2022
MAPLE
N:= 10000: # to get all terms <= N
Primes:= select(isprime, [seq(i, i=3..N/3, 4)]):
S:=select(`<=`, {seq(seq(Primes[i]*Primes[j], i=1..j-1), j=2..nops(Primes))}, N):
sort(convert(S, list)); # Robert Israel, Dec 11 2015
MATHEMATICA
With[{upto = 820}, Select[Union[Times@@@Subsets[ Select[Prime[Range[ PrimePi[ NextPrime[upto/3]]]], Mod[#, 4] == 3 &], {2}]], # <= upto &]] (* Harvey P. Dale, Aug 19 2011 *)
Select[4Range[5, 197] + 1, PrimeNu[#] == 2 && MoebiusMu[#] == 1 && Mod[FactorInteger[#][[1, 1]], 4] != 1 &] (* Alonso del Arte, Nov 18 2015 *)
PROG
(Haskell)
import Data.Set (singleton, fromList, deleteFindMin, union)
a016105 n = a016105_list !! (n-1)
a016105_list = f [3, 7] (drop 2 a002145_list) 21 (singleton 21) where
f qs (p:p':ps) t s
| m < t = m : f qs (p:p':ps) t s'
| otherwise = m : f (p:qs) (p':ps) t' (s' `union` (fromList pqs))
where (m, s') = deleteFindMin s
t' = head $ dropWhile (> 3*p') pqs
pqs = map (p *) qs
-- Reinhard Zumkeller, Sep 23 2011
(Perl) use ntheory ":all"; forcomposites { say if ($_ % 4) == 1 && is_square_free($_) && scalar(factor($_)) == 2 && !scalar(grep { ($_ % 4) != 3 } factor($_)); } 10000; # Dana Jacobsen, Dec 10 2015
(PARI) list(lim)=my(P=List(), v=List(), t, p); forprimestep(p=3, lim\3, 4, listput(P, p)); for(i=2, #P, p=P[i]; for(j=1, i-1, t=p*P[j]; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jul 01 2016, updated Sep 26 2024
(PARI) isA016105(n) = (2==omega(n)&&2==bigomega(n)&&1==(n%4)&&3==((factor(n)[1, 1])%4)); \\ Antti Karttunen, Dec 26 2020
(Python)
from sympy import factorint
def ok(n):
fn = factorint(n)
return len(fn) == sum(fn.values()) == 2 and all(f%4 == 3 for f in fn)
print([k for k in range(790) if ok(k)]) # Michael S. Branicky, Dec 20 2021
CROSSREFS
Intersection of A005117 and A107978.
Also, subsequence of the following sequences: A046388, A084109, A091113, A167181, A339817.
Sequence in context: A280262 A084109 A376543 * A187073 A271101 A191683
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Erich Friedman
STATUS
approved