login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).
18

%I #69 Sep 26 2024 21:24:05

%S 21,33,57,69,77,93,129,133,141,161,177,201,209,213,217,237,249,253,

%T 301,309,321,329,341,381,393,413,417,437,453,469,473,489,497,501,517,

%U 537,553,573,581,589,597,633,649,669,681,713,717,721,737,749,753,781,789

%N Blum integers: numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).

%C Subsequence of A084109. - _Ralf Stephan_ and _David W. Wilson_, Apr 17 2005

%C Subsequence of A046388. - _Altug Alkan_, Dec 10 2015

%C Subsequence of A339817. No common terms with A339870. - _Antti Karttunen_, Dec 26 2020

%C Named after the Venezuelan-American computer scientist Manuel Blum (b. 1938). - _Amiram Eldar_, Jun 06 2021

%C First introduced by Blum, Blum, & Shub for the generation of pseudorandom numbers and later applied (by Manuel Blum and other authors) to zero-knowledge proofs. - _Charles R Greathouse IV_, Sep 26 2024

%D Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudorandom number generator, SIAM Journal on computing 15:2 (1986), pp. 364-383.

%H Antti Karttunen, <a href="/A016105/b016105.txt">Table of n, a(n) for n = 1..26828</a> (all terms < 2^19; first 1000 terms from T. D. Noe)

%H Joe Hurd, <a href="http://www.gilith.com/research/talks/cambridge1997.pdf">Blum Integers</a>, Talk at the Trinity College, Jan 20 1997.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Blum_integer">Blum integer</a>.

%F a(n) = A195758(n) * A195759(n). - _Reinhard Zumkeller_, Sep 23 2011

%F a(n) ~ 4n log n/log log n. - _Charles R Greathouse IV_, Sep 17 2022

%p N:= 10000: # to get all terms <= N

%p Primes:= select(isprime, [seq(i,i=3..N/3,4)]):

%p S:=select(`<=`,{seq(seq(Primes[i]*Primes[j],i=1..j-1),j=2..nops(Primes))},N):

%p sort(convert(S,list)); # _Robert Israel_, Dec 11 2015

%t With[{upto = 820}, Select[Union[Times@@@Subsets[ Select[Prime[Range[ PrimePi[ NextPrime[upto/3]]]], Mod[#, 4] == 3 &], {2}]], # <= upto &]] (* _Harvey P. Dale_, Aug 19 2011 *)

%t Select[4Range[5, 197] + 1, PrimeNu[#] == 2 && MoebiusMu[#] == 1 && Mod[FactorInteger[#][[1, 1]], 4] != 1 &] (* _Alonso del Arte_, Nov 18 2015 *)

%o (Haskell)

%o import Data.Set (singleton, fromList, deleteFindMin, union)

%o a016105 n = a016105_list !! (n-1)

%o a016105_list = f [3,7] (drop 2 a002145_list) 21 (singleton 21) where

%o f qs (p:p':ps) t s

%o | m < t = m : f qs (p:p':ps) t s'

%o | otherwise = m : f (p:qs) (p':ps) t' (s' `union` (fromList pqs))

%o where (m,s') = deleteFindMin s

%o t' = head $ dropWhile (> 3*p') pqs

%o pqs = map (p *) qs

%o -- _Reinhard Zumkeller_, Sep 23 2011

%o (Perl) use ntheory ":all"; forcomposites { say if ($_ % 4) == 1 && is_square_free($_) && scalar(factor($_)) == 2 && !scalar(grep { ($_ % 4) != 3 } factor($_)); } 10000; # _Dana Jacobsen_, Dec 10 2015

%o (PARI) list(lim)=my(P=List(),v=List(),t,p); forprimestep(p=3,lim\3,4, listput(P,p)); for(i=2,#P, p=P[i]; for(j=1,i-1, t=p*P[j]; if(t>lim, break); listput(v,t))); Set(v) \\ _Charles R Greathouse IV_, Jul 01 2016, updated Sep 26 2024

%o (PARI) isA016105(n) = (2==omega(n)&&2==bigomega(n)&&1==(n%4)&&3==((factor(n)[1,1])%4)); \\ _Antti Karttunen_, Dec 26 2020

%o (Python)

%o from sympy import factorint

%o def ok(n):

%o fn = factorint(n)

%o return len(fn) == sum(fn.values()) == 2 and all(f%4 == 3 for f in fn)

%o print([k for k in range(790) if ok(k)]) # _Michael S. Branicky_, Dec 20 2021

%Y Cf. A002145, A006881, A046388, A339870.

%Y Intersection of A005117 and A107978.

%Y Also, subsequence of the following sequences: A046388, A084109, A091113, A167181, A339817.

%K nonn,easy,nice

%O 1,1

%A _Robert G. Wilson v_

%E More terms from _Erich Friedman_