login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016103
Expansion of 1/((1-4x)(1-5x)(1-6x)).
5
1, 15, 151, 1275, 9751, 70035, 481951, 3216795, 20991751, 134667555, 852639151, 5343198315, 33212784151, 205111785075, 1260114546751, 7708980203835, 46999640806951, 285743822630595, 1733261544204751
OFFSET
0,2
COMMENTS
2*a(n-2) = 6^n - 2*5^n + 4^n is the number of 3 X n {0,1}-matrices such that: (a) first and second row have a common 1, (b) first and third row have a common 1, (c) second and third row have no common 1. - Andi Fugard and Vladeta Jovovic, Jul 26 2008
This is the third column of the Sheffer triangle A143496 (4-restricted Stirling2 numbers). See A193685 for general comments. - Wolfdieter Lang, Oct 08 2011
FORMULA
a(n) = 2^(3 + 2*n) + 2^(1 + n) * 3^(2 + n) - 5^(2 + n). - Andi Fugard, Jul 22 2008
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-2) = f(n,2,4), n >= 2. - Milan Janjic, Apr 26 2009
O.g.f.: 1/((1-4*x)*(1-5*x)*(1-6*x)).
E.g.f.: (d^2/dx^2)(exp(4*x)*((exp(x)-1)^2)/2!). See the Sheffer triangle comment above. - Wolfdieter Lang, Oct 08 2011
a(n) = 15*a(n-1) - 74*a(n-2) + 120*a(n-3). - Vincenzo Librandi, Jun 24 2013
MATHEMATICA
CoefficientList[Series[1 / ((1 - 4 x) (1 - 5 x) (1 - 6 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 24 2013 *)
PROG
(PARI) Vec(1/((1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-4*x)*(1-5*x)*(1-6*x)))); // Vincenzo Librandi, Jun 24 2013
(Magma) I:=[1, 15, 151]; [n le 3 select I[n] else 15*Self(n-1)-74*Self(n-2)+120*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jun 24 2013
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved