The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193685 5-Stirling numbers of the second kind. 13
 1, 5, 1, 25, 11, 1, 125, 91, 18, 1, 625, 671, 217, 26, 1, 3125, 4651, 2190, 425, 35, 1, 15625, 31031, 19981, 5590, 740, 45, 1, 78125, 201811, 170898, 64701, 12250, 1190, 56, 1, 390625, 1288991, 1398097, 688506, 174951, 24150, 1806, 68, 1, 1953125, 8124571, 11075670, 6906145, 2263065, 416451, 44016, 2622, 81, 1, 9765625, 50700551, 85654261, 66324830, 27273730, 6427575, 900627, 75480, 3675, 95, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is the lower triangular Sheffer matrix (exp(5*x),exp(x)-1). For Sheffer matrices see the W. Lang link under A006232 with references, and the rules for the conversion to the umbral notation of S. Roman's book. The general case is Sheffer (exp(r*x),exp(x)-1), r=0,1,..., corresponding to r-Stirling2 numbers with row and column offsets 0. See the Broder link for r-Stirling2 numbers with offset [r,r]. a(n,m), n >= m >= 0, gives the number of partitions of the set {1.2....,n+5} into m+5 nonempty distinct subsets such that 1,2,3,4 and 5 belong to distinct subsets. a(n,m) appears in the following normal ordering of Bose operators a and a* satisfying the Lie algebra [a,a*]=1: (a*a)^n (a*)^5 = Sum_{m=0..n} a(n,m)*(a*)^(5+m)*a^m, n >= 0. See the Mikhailov papers, where a(n,m) = S(n+5,m+5,5). With a->D=d/dx and a*->x we also have (xD)^n x^5 = Sum_{m=0..n} a(n,m)*x^(5+m)*D^m, n >= 0. LINKS Vincenzo Librandi, Rows n = 0..100, flattened Peter Bala, Generalized Dobinski formulas Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984) A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - N. J. A. Sloane, Mar 28 2015] Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10. V. V. Mikhailov, Ordering of some boson operator functions, J. Phys A: Math. Gen. 16 (1983) 3817-3827. V. V. Mikhailov, Normal ordering and generalised Stirling numbers, J. Phys A: Math. Gen. 18 (1985) 231-235. FORMULA E.g.f. of row polynomials s(n,x):=Sum_{m=0..n} a(n,m)*x^m: exp(5*z + x(exp(z)-1)). E.g.f. of column no. m (with leading zeros): exp(5*x)*((exp(x)-1)^m)/m!, m >= 0 (Sheffer). O.g.f. of column no. m (without leading zeros): 1/Product_{j=0..m} (1-(5+j)*x), m >= 0. (Compute the first derivative of the column e.g.f. and compare its Laplace transform with the partial fraction decomposition of the o.g.f. x^(m-1)/Product_{j=0..m} (1-(5+j)*x). This works for every r-restricted Stirling2 triangle.) Recurrence: a(n,m) = (5+m)*a(n-1,m) + a(n-1,m-1), a(0,0)=1, a(n,m)=0 if n < m, a(n,-1)=0. a(n,m) = Sum_{j=0..min(5,n-m)} S1(5,5-j)*S2(n+5-j,m+5), n >= m >= 0, with S1 and S2 the Stirling1 and Stirling2 numbers A008275 and A048993, respectively (see the Mikailov papers). Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k>=0} k*(4+k)^(n-1)*x^(k-1)/k!. - Peter Bala, Jun 23 2014 EXAMPLE n\m 0 1 2 3 4 5 ... 0 1 1 5 1 2 25 11 1 3 125 91 18 1 4 625 671 217 26 1 5 3125 4651 2190 425 35 1 ... 5-restricted S2: a(1,0)=5 from 1,6|2|3|4|5, 2,6|1|3|4|5, 3,6|1|2|4|5, 4,6|1|2|3|5 and 5,6|1|2|3|4. Recurrence: a(4,2) = (5+2)*a(3,2)+ a(3,1) = 7*18 + 91 = 217. Normal ordering (n=1): (xD)^1 x^5 = Sum_{m=0..1} a(1,m)*x^(5+m)*D^m = 5*x^5 + 1*x^6*D. a(2,1) = Sum_{j=0..1} S1(5,5-j)*S2(7-j,6) = 1*21 - 10*1 = 11. MATHEMATICA a[n_, m_] := Sum[ StirlingS1[5, 5-j]*StirlingS2[n+5-j, m+5], {j, 0, Min[5, n-m]}]; Flatten[ Table[ a[n, m], {n, 0, 10}, {m, 0, n}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *) CROSSREFS Cf. A048993, A143494, A143495, A143496. Cf. A196834 (row sums), A196835 (alternating row sums). Columns: A000351 (m=0), A005062 (m=1), A019757 (m=2), A028165 (m=3), ... Sequence in context: A038243 A286231 A218016 * A174358 A264131 A075500 Adjacent sequences: A193682 A193683 A193684 * A193686 A193687 A193688 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 14:47 EDT 2024. Contains 374549 sequences. (Running on oeis4.)