login
A286231
Sum T(n,k) of the entries in the k-th last cycles of all permutations of [n]; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
4
1, 5, 1, 25, 10, 1, 143, 79, 17, 1, 942, 634, 197, 26, 1, 7074, 5462, 2129, 417, 37, 1, 59832, 51214, 23381, 5856, 786, 50, 1, 563688, 523386, 269033, 80053, 13934, 1360, 65, 1, 5858640, 5813892, 3281206, 1111498, 232349, 29728, 2204, 82, 1
OFFSET
1,2
LINKS
Wikipedia, Permutation
EXAMPLE
T(3,2) = 10 because the sum of the entries in the second last cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 0+0+3+4+1+2 = 10.
Triangle T(n,k) begins:
1;
5, 1;
25, 10, 1;
143, 79, 17, 1;
942, 634, 197, 26, 1;
7074, 5462, 2129, 417, 37, 1;
59832, 51214, 23381, 5856, 786, 50, 1;
563688, 523386, 269033, 80053, 13934, 1360, 65, 1;
...
CROSSREFS
Column k=1 gives A285382.
Main diagonal and first lower diagonal give: A000012, A002522.
Row sums give A000142 * A000217 = A180119.
Sequence in context: A162259 A077195 A038243 * A218016 A193685 A174358
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 04 2017
STATUS
approved