|
|
A286229
|
|
Decimal expansion of Sum_{p prime} 1/(p^3 - 1).
|
|
3
|
|
|
1, 9, 4, 1, 1, 8, 1, 6, 9, 8, 3, 2, 6, 3, 3, 7, 9, 2, 2, 9, 9, 5, 8, 7, 4, 8, 4, 9, 1, 1, 3, 8, 0, 8, 3, 7, 4, 5, 1, 8, 7, 7, 0, 1, 8, 4, 5, 2, 7, 9, 2, 1, 9, 7, 7, 3, 5, 0, 4, 3, 4, 9, 4, 0, 4, 1, 0, 3, 8, 0, 8, 7, 4, 2, 0, 5, 7, 9, 2, 5, 2, 6, 3, 3, 9, 3, 9, 5, 3, 9, 8, 7, 7, 6, 5, 4, 3, 5, 3, 6, 7, 8, 8, 2, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Prime Sums.
|
|
FORMULA
|
Equals Sum_{k>=1} primezeta(3*k).
More generally, Sum_{p prime} 1/(p^s - 1) = Sum_{k>=1} primezeta(s*k).
|
|
EXAMPLE
|
1/(2^3 - 1) + 1/(3^3 - 1) + 1/(5^3 - 1) + ... = 1/2^3 + 1/3^3 + 1/5^3 + ... + 1/2^6 + 1/3^6 + 1/5^6 + ... + 1/2^9 + 1/3^9 + 1/5^9 + ... = 0.19411816983263379229...
|
|
MATHEMATICA
|
digits = 105; sp = NSum[PrimeZetaP[3 n], {n, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|