OFFSET
0,1
COMMENTS
By geometric series expansion, the same as the sum over the prime zeta function at even arguments, P(2i), i=1,2,....
(Pi^2/6)*density of A190641, the numbers divisible by exactly one prime with exponent greater than 1. - Charles R Greathouse IV, Aug 02 2016
LINKS
Jacques Grah, Comportement moyen du cardinal de certains ensembles de facteurs premiers, Monatsh. Math., Vol. 118 (1994), pp. 91-109, Corollary 6.1.
Carl Pomerance and Andrzej Schinzel, Multiplicative Properties of Sets of Residues, Moscow Journal of Combinatorics and Number Theory, Vol. 1, Iss. 1 (2011), pp. 52-66. See p. 61.
FORMULA
EXAMPLE
0.551693297656999184439731023971343578131500377778628252230...
MATHEMATICA
digits = 105; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[delta1 = Sum[PrimeZetaP[2n], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2m0];
While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[delta1, digits]]; rd[m] (* Jean-François Alcover, Sep 11 2015, updated Mar 16 2019 *)
PROG
(PARI) eps()=2.>>bitprecision(1.)
primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
sumpos(n=1, primezeta(2*n)) \\ Charles R Greathouse IV, Aug 02 2016
(PARI) sumeulerrat(1/(p^2-1)) \\ Amiram Eldar, Mar 18 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Jan 17 2009
EXTENSIONS
More digits from Jean-François Alcover, Sep 11 2015
STATUS
approved