login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084920 a(n) = (prime(n)-1)*(prime(n)+1). 30
3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013

Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Nik Lygeros and Olivier Rozier, A new solution to the equation tau(p) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.

FORMULA

a(n) = A006093(n) * A008864(n);

a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.

Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009

a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009

a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016

a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017

a(n) = 24 * A024702(n) for n > 2. - Jianing Song, Apr 28 2019

Sum_{n>=1} 1/a(n) = A154945. - Amiram Eldar, Nov 09 2020

MAPLE

A084920:=n->ithprime(n)^2-1; seq(A084920(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013

MATHEMATICA

Table[Prime[n]^2 - 1, {n, 50}] (* Wesley Ivan Hurt, Oct 11 2013 *)

Prime[Range[50]]^2-1 (* Harvey P. Dale, Oct 02 2021 *)

PROG

(Haskell)

a084920 n = (p - 1) * (p + 1) where p = a000040 n

-- Reinhard Zumkeller, Aug 27 2013

(MAGMA) [p^2-1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 30 2015

(Sage) [(p-1)*(p+1) for p in primes(200)] # Bruno Berselli, Mar 30 2015

(PARI) a(n) = (prime(n)-1)*(prime(n)+1); \\ Michel Marcus, Jul 28 2016

CROSSREFS

Cf. A000040, A005563, A049001, A154945, A166010, A182200, A182174.

Cf. A006093, A008864, A084921, A084922.

Cf. A066872, A001248, A024702.

Sequence in context: A280190 A037450 A081990 * A323278 A026556 A096001

Adjacent sequences:  A084917 A084918 A084919 * A084921 A084922 A084923

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jun 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 04:02 EST 2021. Contains 349426 sequences. (Running on oeis4.)