login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084920
a(n) = (prime(n)-1)*(prime(n)+1).
34
3, 8, 24, 48, 120, 168, 288, 360, 528, 840, 960, 1368, 1680, 1848, 2208, 2808, 3480, 3720, 4488, 5040, 5328, 6240, 6888, 7920, 9408, 10200, 10608, 11448, 11880, 12768, 16128, 17160, 18768, 19320, 22200, 22800, 24648, 26568, 27888, 29928
OFFSET
1,1
COMMENTS
Squares of primes minus 1. - Wesley Ivan Hurt, Oct 11 2013
Integers k for which there exist exactly two positive integers b such that (k+1)/(b+1) is an integer. - Benedict W. J. Irwin, Jul 26 2016
LINKS
Barry Brent, On the Constant Terms of Certain Laurent Series, Preprints (2023) 2023061164.
Nik Lygeros and Olivier Rozier, A new solution to the equation tau(p) == 0 (mod p), J. Int. Seq. 13 (2010), Article 10.7.4.
FORMULA
a(n) = A006093(n) * A008864(n);
a(n) = A084921(n)*2, for n > 1; a(n) = A084922(n)*6, for n > 2.
Product_{n > 0} a(n)/A066872(n) = 2/5. a(n) = A001248(n) - 1. - R. J. Mathar, Feb 01 2009
a(n) = prime(n)^2 - 1 = A001248(n) - 1. - Vladimir Joseph Stephan Orlovsky, Oct 17 2009
a(n) ~ n^2*log(n)^2. - Ilya Gutkovskiy, Jul 28 2016
a(n) = (1/2) * Sum_{|k|<=2*sqrt(p)} k^2*H(4*p-k^2) where H() is the Hurwitz class number and p is n-th prime. - Seiichi Manyama, Dec 31 2017
a(n) = 24 * A024702(n) for n > 2. - Jianing Song, Apr 28 2019
Sum_{n>=1} 1/a(n) = A154945. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = Pi^2/6 (A013661).
Product_{n>=1} (1 - 1/a(n)) = A065469. (End)
MAPLE
A084920:=n->ithprime(n)^2-1; seq(A084920(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013
MATHEMATICA
Table[Prime[n]^2 - 1, {n, 50}] (* Wesley Ivan Hurt, Oct 11 2013 *)
Prime[Range[50]]^2-1 (* Harvey P. Dale, Oct 02 2021 *)
PROG
(Haskell)
a084920 n = (p - 1) * (p + 1) where p = a000040 n
-- Reinhard Zumkeller, Aug 27 2013
(Magma) [p^2-1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 30 2015
(Sage) [(p-1)*(p+1) for p in primes(200)] # Bruno Berselli, Mar 30 2015
(PARI) a(n) = (prime(n)-1)*(prime(n)+1); \\ Michel Marcus, Jul 28 2016
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jun 11 2003
STATUS
approved