login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066872
a(n) = prime(n)^2 + 1.
19
5, 10, 26, 50, 122, 170, 290, 362, 530, 842, 962, 1370, 1682, 1850, 2210, 2810, 3482, 3722, 4490, 5042, 5330, 6242, 6890, 7922, 9410, 10202, 10610, 11450, 11882, 12770, 16130, 17162, 18770, 19322, 22202, 22802, 24650, 26570, 27890, 29930, 32042
OFFSET
1,1
COMMENTS
From R. J. Mathar, Aug 28 2011: (Start)
There are at least three "natural" embeddings of this function into multiplicative functions b(n), c(n) and d(n):
(i) The first is b(n) = 1, 5, 10, 0, 26, 0, 50, ... (n>=1) with b(p) = p^2+1, b(p^e)=0 if e>=2, substituting zero for all composite n.
(ii) The second is c(n) = 1, 5, 10, 9, 26, 50, 50, 17, 28, 130, ... (n>=1) with c(p^e)= p^(e+1)+1.
(iii) The third is d(n) = 1, 5, 10, 5, 26, 50, 50, 5, 10, 130, ... (n>=1) with d(p^e) = p^2+1 if e>=1. (End)
For n > 1, a(n)/2 is of the form 4*k+1. - Altug Alkan, Apr 08 2016
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (first 1000 terms from Harry J. Smith)
R. P. Boas & N. J. A. Sloane, Correspondence, 1974
FORMULA
a(n) = A002522(A000040(n)). - Altug Alkan, Apr 08 2016
a(n) = A000010(A000040(n)^2) + A323599(A000040(n)^2). - Torlach Rush, Jan 25 2019
Product_{n>=1} (1 - 1/a(n)) = Pi^2/15 (A182448). - Amiram Eldar, Nov 07 2022
From Antti Karttunen, Dec 24 2024: (Start)
a(n) = 1 + A001248(n).
a(n) = A000203(A000040(n)^3) / A000203(A000040(n)). (End)
MATHEMATICA
Table[Prime[n]^2 + 1, {n, 41}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
PROG
(PARI) A066872(n) = (prime(n)^2 + 1); \\ Harry J. Smith, Apr 02 2010
(Magma) [p^2+1: p in PrimesUpTo(300)]; // Vincenzo Librandi, Oct 31 2014
KEYWORD
easy,nonn,changed
AUTHOR
Joseph L. Pe, Jan 21 2002
STATUS
approved