login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = prime(n)^2 + 1.
20

%I #56 Dec 24 2024 18:25:41

%S 5,10,26,50,122,170,290,362,530,842,962,1370,1682,1850,2210,2810,3482,

%T 3722,4490,5042,5330,6242,6890,7922,9410,10202,10610,11450,11882,

%U 12770,16130,17162,18770,19322,22202,22802,24650,26570,27890,29930,32042

%N a(n) = prime(n)^2 + 1.

%C From _R. J. Mathar_, Aug 28 2011: (Start)

%C There are at least three "natural" embeddings of this function into multiplicative functions b(n), c(n) and d(n):

%C (i) The first is b(n) = 1, 5, 10, 0, 26, 0, 50, ... (n>=1) with b(p) = p^2+1, b(p^e)=0 if e>=2, substituting zero for all composite n.

%C (ii) The second is c(n) = 1, 5, 10, 9, 26, 50, 50, 17, 28, 130, ... (n>=1) with c(p^e)= p^(e+1)+1.

%C (iii) The third is d(n) = 1, 5, 10, 5, 26, 50, 50, 5, 10, 130, ... (n>=1) with d(p^e) = p^2+1 if e>=1. (End)

%C For n > 1, a(n)/2 is of the form 4*k+1. - _Altug Alkan_, Apr 08 2016

%H Antti Karttunen, <a href="/A066872/b066872.txt">Table of n, a(n) for n = 1..20000</a> (first 1000 terms from Harry J. Smith)

%H R. P. Boas & N. J. A. Sloane, <a href="/A005381/a005381.pdf">Correspondence, 1974</a>

%F a(n) = A002522(A000040(n)). - _Altug Alkan_, Apr 08 2016

%F a(n) = A000010(A000040(n)^2) + A323599(A000040(n)^2). - _Torlach Rush_, Jan 25 2019

%F Product_{n>=1} (1 - 1/a(n)) = Pi^2/15 (A182448). - _Amiram Eldar_, Nov 07 2022

%F From _Antti Karttunen_, Dec 24 2024: (Start)

%F a(n) = 1 + A001248(n).

%F a(n) = A000203(A000040(n)^3) / A000203(A000040(n)). (End)

%t Table[Prime[n]^2 + 1, {n, 41}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 11 2009 *)

%o (PARI) A066872(n) = (prime(n)^2 + 1); \\ _Harry J. Smith_, Apr 02 2010

%o (Magma) [p^2+1: p in PrimesUpTo(300)]; // _Vincenzo Librandi_, Oct 31 2014

%Y Cf. A002522, A000010, A000040, A000203, A001248, A182448, A323599.

%K easy,nonn

%O 1,1

%A _Joseph L. Pe_, Jan 21 2002