login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290055
Expansion of x*(1 + 4*x + x^2)/((1 - x)^5*(1 + x)^4).
1
0, 1, 5, 10, 26, 40, 80, 110, 190, 245, 385, 476, 700, 840, 1176, 1380, 1860, 2145, 2805, 3190, 4070, 4576, 5720, 6370, 7826, 8645, 10465, 11480, 13720, 14960, 17680, 19176, 22440, 24225, 28101, 30210, 34770, 37240, 42560, 45430, 51590, 54901, 61985, 65780, 73876, 78200, 87400, 92300, 102700, 108225, 119925, 126126
OFFSET
0,3
COMMENTS
More generally, the generalized 4-dimensional figurate numbers are convolution of the sequence {1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...} with generalized polygonal numbers (A195152).
FORMULA
G.f.: x*(1 + 4*x + x^2)/((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Generalized 4-dimensional figurate numbers (A002419): (3*n - 1)*binomial(n + 2,3)/2, n = 0,+1,-3,+2,-4,+3,-5, ...
Convolution of the sequences A027656 and A001082 (with offset 0).
a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(6*n^2+30*n+5-(2*n+5)*(-1)^n)/1536. - Luce ETIENNE, Nov 18 2017
MATHEMATICA
CoefficientList[Series[x (1 + 4 x + x^2)/((1 - x)^5 (1 + x)^4), {x, 0, 51}], x]
LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 1, 5, 10, 26, 40, 80, 110, 190}, 52]
PROG
(PARI) x='x+O('x^99); concat(0, Vec(x*(1+4*x+x^2)/((1-x)^5*(1 + x)^4))) \\ Altug Alkan, Aug 15 2017
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Aug 15 2017
STATUS
approved