login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290058
Number of X-rays of n X n binary matrices with exactly floor(n^2/2) ones.
3
1, 1, 4, 30, 440, 9892, 331950, 15121926, 915201732, 70120569074, 6696969703276, 774618119733020, 107284227278413622, 17455779156567652806, 3307802489634916900474, 720231707823173636419042, 178973636259170839478327332, 50249140887232774758578932120
OFFSET
0,3
COMMENTS
The X-ray of a matrix is defined as the sequence of antidiagonal sums.
LINKS
C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005.
FORMULA
a(n) = A290057(n,floor(n^2/2)).
a(n) ~ 6*sqrt(Pi) * n^(2*n+1/2) / exp(2*n). - Vaclav Kotesovec, Jul 22 2017
EXAMPLE
a(2) = 4: 011, 020, 101, 110.
a(3) = 30: 00121, 00211, 00220, 00301, 00310, 01021, 01111, 01120, 01201, 01210, 01300, 02011, 02020, 02101, 02110, 02200, 10021, 10111, 10120, 10201, 10210, 10300, 11011, 11020, 11101, 11110, 11200, 12001, 12010, 12100.
MAPLE
b:= proc(n, i, t) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
add(b(n-j, i-t, 1-t), j=0..min(i, n)))))(i*(i+1-t))
end:
a:= n-> b(iquo(n^2, 2), n, 1):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, i_, t_]:= b[n, i, t] = Function[{m, jm}, If[n>m, 0, If[n==m, 1, Sum[b[n-j, i-t, 1-t], {j, 0, jm}]]]][i*(i+1-t), Min[i, n]]; a[n_]:= b[Quotient[n^2, 2], n, 1]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 09 2017, translated from Maple *)
CROSSREFS
Sequence in context: A363911 A326205 A351795 * A168129 A193500 A163885
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 19 2017
STATUS
approved