login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290061
a(n) = (1/24)*(n + 3)*(3*n^3 + 5*n^2 - 6*n + 16).
3
3, 10, 31, 77, 162, 303, 520, 836, 1277, 1872, 2653, 3655, 4916, 6477, 8382, 10678, 13415, 16646, 20427, 24817, 29878, 35675, 42276, 49752, 58177, 67628, 78185, 89931, 102952, 117337, 133178, 150570, 169611, 190402, 213047, 237653, 264330, 293191, 324352, 357932
OFFSET
1,1
FORMULA
From Colin Barker, Jul 20 2017: (Start)
G.f.: x*(3 - 5*x + 11*x^2 - 8*x^3 + 2*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
(End)
MATHEMATICA
Table[(1/24)(n+3)(3n^3+5n^2-6n+16), {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {3, 10, 31, 77, 162}, 40] (* Harvey P. Dale, Oct 29 2018 *)
PROG
(PARI) Vec(x*(3 - 5*x + 11*x^2 - 8*x^3 + 2*x^4) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Jul 20 2017
(PARI) vector(50, n, (n+3)*(3*n^3+5*n^2-6*n+16)/24) \\ Derek Orr, Jul 24 2017
CROSSREFS
Column 3 of A290053.
Sequence in context: A316764 A331780 A360563 * A212031 A339032 A374925
KEYWORD
nonn,easy
AUTHOR
STATUS
approved