OFFSET
1,1
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
From Colin Barker, Jul 20 2017: (Start)
G.f.: x*(3 - 5*x + 11*x^2 - 8*x^3 + 2*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
(End)
MATHEMATICA
Table[(1/24)(n+3)(3n^3+5n^2-6n+16), {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {3, 10, 31, 77, 162}, 40] (* Harvey P. Dale, Oct 29 2018 *)
PROG
(PARI) Vec(x*(3 - 5*x + 11*x^2 - 8*x^3 + 2*x^4) / (1 - x)^5 + O(x^50)) \\ Colin Barker, Jul 20 2017
(PARI) vector(50, n, (n+3)*(3*n^3+5*n^2-6*n+16)/24) \\ Derek Orr, Jul 24 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gregory Gerard Wojnar, Jul 19 2017
STATUS
approved