The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290057 Number T(n,k) of X-rays of n X n binary matrices with exactly k ones; triangle T(n,k), n>=0, 0<=k<=n^2, read by rows. 3
 1, 1, 1, 1, 3, 4, 3, 1, 1, 5, 13, 23, 30, 30, 23, 13, 5, 1, 1, 7, 26, 68, 139, 234, 334, 411, 440, 411, 334, 234, 139, 68, 26, 7, 1, 1, 9, 43, 145, 386, 860, 1660, 2838, 4362, 6090, 7779, 9135, 9892, 9892, 9135, 7779, 6090, 4362, 2838, 1660, 860, 386, 145, 43, 9, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS The X-ray of a matrix is defined as the sequence of antidiagonal sums. T(n,k) is defined for all n,k >= 0.  The triangle contains only the positive terms.  T(n,k) = 0 for k>n^2. LINKS Alois P. Heinz, Rows n = 0..40, flattened C. Bebeacua, T. Mansour, A. Postnikov and S. Severini, On the X-rays of permutations, arXiv:math/0506334 [math.CO], 2005. FORMULA T(n,floor(n^2/2)) = A290058(n). T(n,k) = T(n,n^2-k). EXAMPLE Triangle T(n,k) begins:   1;   1, 1;   1, 3,  4,  3,   1;   1, 5, 13, 23,  30,  30,  23,  13,   5,   1;   1, 7, 26, 68, 139, 234, 334, 411, 440, 411, 334, 234, 139, 68, 26, 7, 1;   ... MAPLE b:= proc(n, i, t) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,       add(b(n-j, i-t, 1-t), j=0..min(i, n)))))(i*(i+1-t))     end: T:= (n, k)-> b(k, n, 1): seq(seq(T(n, k), k=0..n^2), n=0..7); MATHEMATICA b[n_, i_, t_]:= b[n, i, t] = Function[{m, jm}, If[n>m, 0, If[n==m, 1, Sum[b[n-j, i-t, 1-t], {j, 0, jm}]]]][i*(i+1-t), Min[i, n]]; T[n_, k_]:= b[k, n, 1]; Table[T[n, k], {n, 0, 7}, {k, 0, n^2}] // Flatten (* Jean-François Alcover, Aug 09 2017, translated from Maple *) CROSSREFS Columns k=0-2 give: A000012, A004273, A091823(n-1) for n>1. Main diagonal gives A290052. Row sums give A010790. Cf. A000290, A290058. Sequence in context: A201162 A096646 A306234 * A249790 A302713 A136206 Adjacent sequences:  A290054 A290055 A290056 * A290058 A290059 A290060 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, Jul 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 06:07 EDT 2021. Contains 347509 sequences. (Running on oeis4.)