login
A004273
0 together with odd numbers.
34
0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
OFFSET
0,3
COMMENTS
Also continued fraction for tanh(1) (A073744 is decimal expansion). - Rick L. Shepherd, Aug 07 2002
From Jaroslav Krizek, May 28 2010: (Start)
For n >= 1, a(n) = numbers k such that arithmetic mean of the first k positive integers is integer. A040001(a(n)) = 1. See A145051 and A040001.
For n >= 1, a(n) = corresponding values of antiharmonic means to numbers from A016777 (numbers k such that antiharmonic mean of the first k positive integers is integer).
a(n) = A000330(A016777(n)) / A000217(A016777(n)) = A146535(A016777(n)+1). (End)
If the n-th prime is denoted by p(n) then it appears that a(j) = distinct, increasing values of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) for each j. - Christopher Hunt Gribble, Oct 05 2010
A214546(a(n)) > 0. - Reinhard Zumkeller, Jul 20 2012
Dimension of the space of weight 2n+2 cusp forms for Gamma_0(6).
The size of a maximal 2-degenerate graph of order n-1 (this class includes 2-trees and maximal outerplanar graphs (MOPs)). - Allan Bickle, Nov 14 2021
LINKS
Allan Bickle, Structural results on maximal k-degenerate graphs, Discuss. Math. Graph Theory 32 4 (2012), 659-676.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
D. R. Lick and A. T. White, k-degenerate graphs, Canad. J. Math. 22 (1970), 1082-1096.
FORMULA
G.f.: x*(1+x)/(-1+x)^2. - R. J. Mathar, Nov 18 2007
a(n) = lodumo_2(A057427(n)). - Philippe Deléham, Apr 26 2009
Euler transform of length 2 sequence [3, -1]. - Michael Somos, Jul 03 2014
a(n) = (4*n - 1 - (-1)^(2^n))/2. - Luce ETIENNE, Jul 11 2015
EXAMPLE
G.f. = x + 3*x^2 + 5*x^3 + 7*x^4 + 9*x^5 + 11*x^6 + 13*x^7 + 15*x^8 + 17*x^9 + ...
MATHEMATICA
Join[{0}, Range[1, 200, 2]] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
PROG
(Magma) [2*n-Floor((n+2) mod (n+1)): n in [0..70]]; // Vincenzo Librandi, Sep 21 2011
(Sage) def a(n) : return( dimension_cusp_forms( Gamma0(6), 2*n+2) ); # Michael Somos, Jul 03 2014
(PARI) a(n)=max(2*n-1, n) \\ Charles R Greathouse IV, May 14 2014
(GAP) Concatenation([0], List([1, 3..141])); # Muniru A Asiru, Jul 28 2018
(Python)
def A004273(n): return (n<<1)-1 if n else 0 # Chai Wah Wu, Jul 13 2024
CROSSREFS
Cf. A110185, continued fraction expansion of 2*tanh(1/2), and A204877, continued fraction expansion of 3*tanh(1/3). [Bruno Berselli, Jan 26 2012]
Cf. A005408.
Sequence in context: A247328 A317107 A317439 * A005408 A176271 A144396
KEYWORD
nonn,easy
STATUS
approved