|
|
A004273
|
|
0 together with odd numbers.
|
|
34
|
|
|
0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
For n >= 1, a(n) = numbers k such that arithmetic mean of the first k positive integers is integer. A040001(a(n)) = 1. See A145051 and A040001.
For n >= 1, a(n) = corresponding values of antiharmonic means to numbers from A016777 (numbers k such that antiharmonic mean of the first k positive integers is integer).
If the n-th prime is denoted by p(n) then it appears that a(j) = distinct, increasing values of (Sum of the quadratic non-residues of p(n) - Sum of the quadratic residues of p(n)) / p(n) for each j. - Christopher Hunt Gribble, Oct 05 2010
Dimension of the space of weight 2n+2 cusp forms for Gamma_0(6).
The size of a maximal 2-degenerate graph of order n-1 (this class includes 2-trees and maximal outerplanar graphs (MOPs)). - Allan Bickle, Nov 14 2021
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*n - ((n+2) mod (n+1)), n >= 0. - Paolo P. Lava, Aug 29 2007
Euler transform of length 2 sequence [3, -1]. - Michael Somos, Jul 03 2014
a(n) = (4*n - 1 - (-1)^(2^n))/2. - Luce ETIENNE, Jul 11 2015
|
|
EXAMPLE
|
G.f. = x + 3*x^2 + 5*x^3 + 7*x^4 + 9*x^5 + 11*x^6 + 13*x^7 + 15*x^8 + 17*x^9 + ...
|
|
MATHEMATICA
|
|
|
PROG
|
(Magma) [2*n-Floor((n+2) mod (n+1)): n in [0..70]]; // Vincenzo Librandi, Sep 21 2011
(Sage) def a(n) : return( dimension_cusp_forms( Gamma0(6), 2*n+2) ); # Michael Somos, Jul 03 2014
(GAP) Concatenation([0], List([1, 3..141])); # Muniru A Asiru, Jul 28 2018
|
|
CROSSREFS
|
Cf. A110185, continued fraction expansion of 2*tanh(1/2), and A204877, continued fraction expansion of 3*tanh(1/3). [Bruno Berselli, Jan 26 2012]
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|